微波放电对准东煤质半焦结构性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of microwave discharge on structural properties of Zhundong semi-coke
  • 作者:谢创举 ; 刘海玉 ; 杨丽敏 ; 乔晓磊 ; 金燕
  • 英文作者:XIE Chuangju;LIU Haiyu;YANG Limin;QIAO Xiaolei;JIN Yan;College of Electrical and Power Engineering, Taiyuan University of Technology;
  • 关键词:微波放电 ; 半焦 ; 准东煤 ; 晶相结构 ; 表面官能团 ; 比表面积
  • 英文关键词:microwave discharge;;semi-coke;;Zhundong coal;;crystal structure;;surface functional group;;specific surface area
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:太原理工大学电气与动力工程学院;
  • 出版日期:2018-10-25 17:06
  • 出版单位:热力发电
  • 年:2018
  • 期:v.47;No.384
  • 基金:山西省青年科技研究基金项目(201601D021093)~~
  • 语种:中文;
  • 页:RLFD201811010
  • 页数:5
  • CN:11
  • ISSN:61-1111/TM
  • 分类号:57-61
摘要
本文在氮气氛围下,制取具有一定吸波能力的常规低温(400℃)半焦(准东煤),在微波诱导放电和屏蔽放电状态下对其微波热解,利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和BET比表面积测试等技术对2种状态下获得焦样的晶相结构、表面官能团和比表面积进行分析。结果表明:相比不放电状态,放电状态下放电10 min可使焦样的晶面层间距d002和晶面横向尺寸La显著增大;不放电状态下,微波加热脱除半焦表面官能团的效果缓慢,而放电状态下放电10 min就使半焦表面的脂肪烃和含氧官能团的数量大幅度减少;不放电微波加热几乎不使焦样的比表面积产生变化,而放电30 min可使焦样的比表面积由4.4 m~2/g增加到45.3 m~2/g,但放电60 min,焦样表面的孔隙结构受放电影响而碎裂严重,比表面积下降到8.5 m~2/g。
        The semi-coke of Zhundong coal with a certain absorbing capacity was prepared on a tube furnace at 400 ℃ in N2 atmosphere. Then, microwave pyrolysis of the semi-coke was performed under the condition of microwave induced discharge and shielding discharge. The crystal phase structure, surface functional groups and specific surface area of the cokes obtained in the above two states were analyzed by X-ray diffractometer(XRD), Fourier transform infrared spectrometer(FT-IR) and BET surface detection. The results show that, compared with the non-discharge state, discharge heating for 10 min significantly increased the interlayer spacing(d002) and the lateral size of the crystallite(La) of the coke. Non-discharge microwave heating was slow to reduce the surface functional groups of the semi-coke, while pyrolysis in discharge state only for 10 min sharply decreased the amount of fat hydrocarbon and oxygen-contained functional groups of the semi-coke. Non-discharge microwave heating hardly changed the pore structure of the coke, but discharge for 30 min could increase the specific surface area of the coke from 4.4 m~2/g to 45.3 m~2/g. However, discharge for 60 min would seriously fracture the pore structure of the coke, reducing the specific surface area to 8.5 m~2/g.
引文
[1]王国胜.新疆准东煤田大井矿区东露天煤矿煤质特性分析[J].煤质技术,2013(5):18-20.WANG Guosheng.Quality characteristics analysis of coal originated from eastern open-air coal mine in large mining area of Xinjiang Zhundong coal field[J].Coal Quality Technology,2013(5):18-20.
    [2]周军,杨哲,刘晓峰,等.低变质煤‐循环煤气微波共热解研究[J].光谱学与光谱分析,2016,36(2):459-465.ZHOU Jun,YANG Zhe,LIU Xiaofeng,et al.Study on microwave co-pyrolysis of low rank coal and circulating coal gas[J].Spectroscopy and Spectral Analysis,2016,36(2):459-465.
    [3]李艳红,刘洋,赵文波,等.炼焦新技术的研究进展[J].化学世界,2014,55(7):434-438.LI Yanhong,LIU Yang,ZHAO Wenbo,et al.Research progress in new coking process and technology[J].Chemical World,2014,55(7):434-438.
    [4]杨景超,许丽华,张文娟.微波技术在煤炭加工中的应用与进展[J].化工进展,2011,30(增刊1):71-73.YANG Jingchao,XU Lihua,ZHANG Wenjuan.Application and progress of microwave in mine processing[J].Chemical Industry and Engineering Progress,2011,30(Suppl.1):71-73.
    [5]LESTER E,KINGMAN S,DODDS C,et al.The potential for rapid coke making using microwave energy[J].Fuel,2006,85(14/15):2057-2063.
    [6]BINNER E,MEDIERO-MUNOYERRO M,HUDDLE T,et al.Factors affecting the microwave coking of coals and the implications on microwave cavity design[J].Fuel Processing Technology,2014,125(9):8-17.
    [7]马红周,王耀宁,兰新哲.微波热解煤的实验研究[J].洁净煤技术,2009,15(4):54-55.MA Hongzhou,WANG Yaoning,LAN Xinzhe.Study on lignite pyrogenation by microwrave[J].Clean Coal Technology,2009,15(4):54-55.
    [8]DAWSON E A,PARKES G M B,BARNES P A,et al.The generation of microwave-induced plasma in granular active carbons under fluidised bed conditions[J].Carbon,2008,46(2):220-228.
    [9]徐云鹏,田志坚,徐竹生,等.活性炭引发的常压连续微波放电下甲烷转化制C2烃[J].石油与天然气化工,2002,31(1):15-17.XU Yunpeng,TIAN Zhijian,XU Zhusheng,et al.Conversion of methane to C2 hydrocarbons via active carbon induced continuous microwave discharge under atmospheric pressure[J].Chemical Engineering of Oil and Gas,2002,31(1):15-17.
    [10]WANG W,WANG B,SUN J,et al.Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J].Rsc Advances,2016,6(58):52974-52981.
    [11]MENéNDEZ J A,JUáREZ-PéREZ E J,RUISáNCHEZE,et al.Ball lightning plasma and plasma arc formation during the microwave heating of carbons[J].Carbon,2011,49(1):346-349.
    [12]HUSSAIN Z,KHAN K M,HUSSAIN K.Microwavemetal interaction pyrolysis of polystyrene[J].Journal of Analytical&Applied Pyrolysis,2010,89(1):39-43.
    [13]MENéNDEZ J A,ARENILLAS A,FIDALGO B,et al.Microwave heating processes involving carbon materials[J].Fuel Processing Technology,2010,91(1):1-8.
    [14]赵彦博.准东煤微波热解特性的初步实验研究[D].哈尔滨:哈尔滨工业大学,2015:34.ZHAO Yanbo.Preliminary experiment research on microwave pyrolysis of Zhundong coal[D].Harbin:Harbin Institute of Technology,2015:34.
    [15]刘虎才,冯静,李培铖.煤的灰成分对焦炭热态强度的影响[J].煤炭加工与综合利用,2015(8):56-60.LIU Hucai,FENG Jing,LI Peicheng.Influence of ash content to the thermal intensity[J].Coal Processing and Comprehensive Utilization,2015(8):56-60.
    [16]刘炎泉,程乐鸣,季杰强,等.准东煤燃烧碱金属析出气、固相分布特性[J].燃料化学学报,2016,44(3):314-320.LIU Yanquan,CHENG Leming,JI Jieqiang,et al.Distribution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion[J].Journal of Fuel Chemistry and Technology,2016,44(3):314-320.
    [17]房永征,曹银平,金鸣林,等.添加无烟煤对焦炭微晶和气孔结构的影响[J].钢铁,2006,41(10):16-18.FANG Yongzheng,CAO Yinping,JIN Minglin,et al.Effect of anthracite in coal blend on micro-crystal and pore structure of coke[J].Iron and Steel,2006,41(10):16-18.
    [18]FENG B,BHATIA S K,BARRY J C.Variation of the crystalline structure of coal char during gasification[J].Energy&Fuels,2003,17(3):744-754.
    [19]CHACóN-TORRES J C,WIRTZ L,PICHLER T.Raman spectroscopy of graphite intercalation compounds:charge transfer,strain,and electron-phonon coupling in graphene layers[J].Physica Status Solidi,2015,251(12):2337-2355.
    [20]WANG Z,SELBACH S M,GRANDE T.Van der Waals density functional study of the energetics of alkali metal intercalation in graphite[J].Rsc Advances,2013,4(8):4069-4079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700