Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Bi and Ni Concentration on the Creep Behavior of the Bulks of Cu/SAC/Cu Micro Solder Joints
  • 作者:孔祥霞 ; 孙凤莲 ; 杨淼森 ; 刘洋
  • 英文作者:KONG Xiangxia;SUN Fenglian;YANG Miaosen;LIU Yang;School of Material Science and Engineering, Harbin University of Science and Technology;
  • 关键词:微焊点 ; 纳米压痕 ; 蠕变应力指数 ; 抗蠕变性能
  • 英文关键词:micro solder joint;;nanoindentation;;creep stress exponent;;creep resistance
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:哈尔滨理工大学材料科学与工程学院;
  • 出版日期:2016-10-25 15:47
  • 出版单位:机械工程学报
  • 年:2017
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51174069)
  • 语种:中文;
  • 页:JXXB201702007
  • 页数:8
  • CN:02
  • ISSN:11-2187/TH
  • 分类号:64-71
摘要
借助纳米压痕试验方法,对Cu/SAC305/Cu,Cu/SAC0705/Cu和Cu/SAC0705BiNi/Cu微焊点体钎料在不同最大载荷下的压入蠕变性能进行比较,并分析和讨论Bi、Ni元素的添加对低银Cu/SAC0705/Cu微焊点体钎料蠕变性能的影响。试验采用一次加载-卸载方式,加载时最大载荷分别为20mN、30mN、40mN和50mN,保载时间均为180s。采用FEISIRION扫描电子显微镜对微焊点体钎料在不同最大载荷下的压痕形貌进行观察。结果表明:在相同最大载荷和保载时间条件下,3种微焊点中Cu/SAC0705BiNi/Cu的蠕变深度和压痕尺寸均小于Cu/SAC305/Cu和Cu/SAC0705/Cu。在4种不同最大载荷下,与Cu/SAC0705/Cu微焊点体钎料相比,Cu/SAC0705BiNi/Cu微焊点体钎料的压入蠕变率分别降低了11.883%、16.059%、8.8157%和12.891%。Bi、Ni元素的添加,使Cu/SAC0705/Cu微焊点体钎料的蠕变应力指数提高了32.175%,有效提高了低银Cu/SAC0705/Cu微焊点体钎料的抗蠕变性能。
        The indentation creep behavior of the bulks of Cu/SAC305/Cu, Cu/SAC0705/Cu and Cu/SAC0705 Bi Ni/Cu lead-free micro solder joints are comparatively investigated at different maximum load by nanoindentation method. And the Bi, Ni concentration on the creep behavior of the bulks of Cu/SAC0705/Cu micro solder joints are analyzed and discussed. The mode of loading-unloading is adopted. Here the holding time is 180 s and the maximum load is 20 m N, 30 m N, 40 m N, and 50 m N, respectively. The indentation morphologies of the bulks of the micro solder joints at different maximum load are observed by FEI SIRION scanning electron microscopy(SEM). The results indicate that the creep depth and indentation size of the bulks of Cu/SAC0705 Bi Ni/Cu are smaller than that of Cu/SAC305/Cu and Cu/SAC0705/Cu at the same maximum load and holding time. Compared with the bulks of Cu/SAC0705/Cu micro solder joints, at four different maximum loads, the indentation creep rate(CIT) of the bulks of Cu/SAC0705 Bi Ni/Cu micro solder joints are declined 11.883%, 16.059%, 8.815 7%, and 12.891%, respectively. The creep stress exponent of the bulks of Cu/SAC0705/Cu micro solder joints increases 32.175 % by adding Bi and Ni elements. The addition of Bi and Ni elements can effectively improve the creep resistance of the bulks of low-Ag Cu/SAC0705/Cu micro solder joints.
引文
[1]YOON J W,NOH B I,JUNG S B.Mechanical reliability of Sn-Ag BGA solder joints with various electroless Ni-P and Ni-B plating layers[J].Components&Packaging Technologies IEEE Transactions on,2010,33(1):222-228.
    [2]尹立孟,张新平.无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J].机械工程学报,2010,46(2):55-60.YIN Limeng,ZHANG Xinping.Experiment and numerical simulation of size effects of mechanical behaviors of lead-free micro-interconnection solder joints[J].Journal of Mechanical Engineering,2010,46(2):55-60.
    [3]周亮,姚英学.纳米压痕硬度尺寸效应分析及其试验研究[J].机械工程学报,2006,42(S1):84-88.ZHOU Liang,YAO Yingxue.Analysis and experiment study of indentation size effect in nanoindentation hardness test[J].Chinese Journal of Mechanical Engineering,2006,42(S1):84-88.
    [4]ROSHANGHIAS A,KOKABI A H,MIYASHITA Y,et al.Nanoindentation creep behavior of nanocomposite Sn-Ag-Cu solders[J].Journal of Electronic Materials,2012,41(8):2057-2064.
    [5]LOTFIAN S,MOLINA-ALDAREGUIA J M,YAZZIE K E,et al.Mechanical characterization of lead-free Sn-Ag-Cu solder joints by high-temperature nanoindentation[J].Journal of Electronic Materials,2013,42(6):1085-1091.
    [6]张亮,韩继光,郭永环,等.Sn Ag Cu/Sn Ag Cu Ce焊点的显微组织与性能[J].机械工程学报,2012,48(8):67-73.ZHANG Liang,HAN Jiguang,GUO Yonghuan,et al.Microstructures and property of Sn Ag Cu/Sn Ag Cu Ce solder joints[J].Journal of Mechanical Engineering,2012,48(8):67-73.
    [7]王春青,王学林,田艳红.Sn Ag Cu无铅微焊点剪切力学性能的体积效应[J].焊接学报,2011,32(4):1-4.WANG Chunqing,WANG Xuelin,TIAN Yanhong.Volume effect shear strength of Sn Ag Cu lead-free solder joints[J].Transactions of the China Welding Institution,2011,32(4):1-4.
    [8]CHUANG C M,LIN K L.Effect of microelements addition on the interfacial reaction between Sn-Ag-Cu solders and the Cu substrate[J].Journal of Electronic Materials,2003,32(12):1426-1431.
    [9]CHUANG T H,YEN S F,CHENG M D.Intermetallic reactions in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes[J].Journal of Electronic Materials,2006,35(2):302-309.
    [10]CHUANG T H,YEN S F,WU H M.Intermetallic formation in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with immersion Ag surface finishes[J].Journal of Electronic Materials,2006,35(2):310-318.
    [11]WANG Y W,LIN Y W,TU C T,et al.Effects of minor Fe,Co and Ni additions on the reactions between Sn Ag Cu solder and Cu[J].Journal of Alloys and Compounds,2009,478(1-2):121-127.
    [12]张亮.Sn Ag Cu系无铅焊点可靠性及相关理论研究[D].南京:南京航空航天大学,2011.ZHANG Liang.Study on reliability of Sn Ag Cu based lead-free soldered joint and related theory[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.
    [13]李霞,孙凤莲,刘洋,等.SAC-Bi-Ni焊点抗热冲击及抗热时效性能研究[C]//第八届全国材料科学与图像科技学术会议论文集,2012,10:37-43.LI Xia,SUN Fenglian,LIU Yang,et al.The resistant of thermal shock and aging properties of SAC-Bi-Ni solder[C]//China Academic Journal Electronic Publishing House,2012,10:37-43.
    [14]LIU Y,SUN F,LIU Y,LI Xuemei.Effect of Ni,Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints[J].Journal of Materials Science Materials in Electronics,2014,25(6):2627-2633.
    [15]王凤江,钱乙余,马鑫.纳米压痕法测量Sn-Ag-Cu无铅钎料BGA焊点的力学性能参数[J].金属学报,2005,41(7):775-779.WANG Fengjiang,QIAN Yiyu,MA Xin.Measurement of mechanical properties of Sn-Ag-Cu bulk solder BGA solder joint using nanoindentation[J].Acta Metallurgica Sinica,2005,41(7):775-779.
    [16]MARQUES V M F,WUNDERLE B,JOHNSTON C,et al.Nanomechanical characterization of Sn-Ag-Cu/Cu joints-Part 2:Nanoindentation creep and its relationship with uniaxial creep as a function of temperature[J].Acta Materialia,2013,61(7):2471-2480.
    [17]CORDOVA M E,SHEN Y L.Indentation versus uniaxial power-law creep:A numerical assessment[J].Journal of Materials Science,2015,50(3):1394-1400.
    [18]MU D,HUANG H,NALD S D,et al.Creep and mechanical properties of Cu6Sn5 and(Cu,Ni)6Sn5 at elevated temperatures[J].Journal of Electronic Materials,2012,42(2):304-311.
    [19]HAN Y D,JING H Y,NAI S M L,et al.Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder[J].Journal of Electronic Materials,2010,39(2):223-229.
    [20]GAO F,NISHIKAWA H,TAKEMOTO T,et al.Mechanical properties versus temperature relation of individual phases in Sn-3.0Ag-0.5Cu lead-free solder alloy[J].Microelectronics Reliability,2009,49(3):296-302.
    [21]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 22458-2008.仪器化纳米压入试验方法通则[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.GB/T 22458-2008 General rules of instrumented nanoindentation test[S].Beijing:Standards Press of China,2009.
    [22]闫焉服,纪莲清,张柯柯,等.Sn Cu钎焊接头稳态蠕变本构方程建立[J].焊接学报,2007,28(9):75-79.YAN Yanfu,JI Lianqing,ZHANG Keke,et al.Foundation of steady state creep constitutive equation of Sn Cu solder joints[J].Transaction of the China Welding Institution,2007,28(9):75-79.
    [23]ALDEN T H.The origin of superplasticity in the Sn-5%Bi alloy[J].Acta Metallurgica,1967,15(3):469-480.
    [24]SHI G Y L Q.Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints[J].Transactions of Nonferrous Metals Society of China,2006,16(3):739-743.
    [25]OHNUMA I,MIYASHITA M,ANZAI K,et al.Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys[J].Journal of Electronic Materials,2000,29(10):1137-1144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700