现代海底热液硫化物矿体微生物风化的几个重要研究方向
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:KEY ISSUES FOR MICROBIAL WEATHERING STUDY IN MODERN SUBMARINE HYDROTHERMAL SULFIDES
  • 作者:孙治雷 ; 窦振亚 ; 黄威 ; 崔汝勇 ; 黄鑫 ; 何拥军
  • 英文作者:SUN Zhilei;DOU Zhenya;HUANG Wei;CUI Ruyong;HUANG Xin;HE Yongjun;Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources;Qingdao Institute of Marine Geology;Institute of Oceanology,Chinese Academy of Sciences;Graduate University of Chinese Academy of Sciences;
  • 关键词:海底热液系统 ; 金属硫化物矿体 ; 微生物风化
  • 英文关键词:Submarine hydrothermal vent systems;;metal sulfide sediment;;microbial weathering
  • 中文刊名:HYDZ
  • 英文刊名:Marine Geology & Quaternary Geology
  • 机构:国土资源部海洋油气资源和环境地质重点实验室;青岛海洋地质研究所;中国科学院海洋研究所;中国科学院研究生院;
  • 出版日期:2014-02-28
  • 出版单位:海洋地质与第四纪地质
  • 年:2014
  • 期:v.34;No.147
  • 基金:国家重点基础发展研究规划项目(SQ2012CB047103);; 中国科学院海洋地质与环境重点实验室开放实验室基金项目(MGE2012KG06);; 地质大调查项目(1212010811049)
  • 语种:中文;
  • 页:HYDZ201401011
  • 页数:10
  • CN:01
  • ISSN:37-1117/P
  • 分类号:69-78
摘要
与现代海底热液系统所伴生的金属硫化矿床是人类未来矿产资源的可靠储备。热液硫化物矿体形成后,在相对漫长的后期改造过程中,金属硫化物成为深海微生物群落可靠而稳定的能量来源,并遭受着微生物的风化蚀变作用。而这种微生物与矿物之间的相互作用,已经逐渐成为目前地球科学与生命科学交叉研究的重要方向之一。简述了现代海底硫化物堆积体的微生物风化过程研究现状,从当前现存待解决的问题出发,展望了未来几个重要的研究方向:包括矿体尺度上微生物因素对风化作用的贡献程度及矿物蚀变次序、细胞尺度上的微观成矿机理、氧化蚀变过程中元素迁移富集及同位素分馏规律,以及涉及到蚀变作用中的微生物种属与有机生物标志物的特征等几个方面,以期加深人们对深海热液环境中微生物与矿物相互作用的理解,同时,为陆地环境中类似矿体的演化规律的研究提供现代视角上的有益思考。
        Some hundreds of sites of massive sulfides have been found along global spreading axes and the submarine volcanoes on ocean ridges and volcanic island arcs.They are expected to be the dependable resources for human society in the future.After formation,massive sulfide ore bodies become the ideal substrates and energy source for diverse submarine microbial communities to survive;hence pervasive microbial weathering begins and lasts for a relatively long period in contrast to the ore body formation,which will provide invaluable chances to discover the interaction between microbes and minerals to expand our understanding on this topic.In this article,we briefly review the current research of microbial weathering process in sulfide ore bodies at seafloor environment and present several critical aspects that are still waiting for exploration.They include:i)the contribution of microbial factor to total mass weathering and degradation and the alteration sequence of minerals in an ore body scale;ii)biomineralization at natural in situ metal sulfide substrate on a micron or even finer scale;iii)the role of microbes in trace metal enrichment, migration and remobilization in massive sulfide heaps,and iv)microbial diversities,physiologic features and organic biomarkers involved in oxidative weathering of massive sulfide.The intention of this presentation is to deepen our understanding about the interaction between microbe and minerals and provide a new insight to investigate the evolutionary history of the analogous ore deposits on land.
引文
[1]Hannington M,Jamieson J,Monec T,et al.The abundance of seafloor massive sulfide deposits[J].Geology,2010,39:1155-1158.
    [2]曾志刚.海底热液地质学[M],2011:550-567.北京:科学出版社.[ZENG Zhigang.Submarine Hydrothermal Geology[M].Beijing:Science Press,2011:550-567]
    [3]Hannington M D,Barrie C T,Bleeker W.The giant Kidd Creek volcanogenic massive sulfide deposit,Western Abitibi subprovince,Canada[C]//The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit,Western Abitibi Subprovince,Canada.Economic Geology,Monograph 10,Preface and introduction,1999,1-28.
    [4]Rona P A.The changing vision of marine minerals[J].Ore Geology Reviews,2008,33:618-666.
    [5]Rona P A.Large Seafloor Volcanic-hosted Massive Sulfide Deposits:Discovered and Undiscovered[C]//Deep-Sea Mining of Seafloor Massive Sulfides:A Reality for Science and Society in the 21st Century Science and Policy.Workshop April 1 2,2009Woods Hole,Massachusetts,USA,abstract.
    [6]Edwards K J.Formation and degradation of seafloor hydrothermal sulfide deposits[C]//Sulfur Biogeochemistry-Past and Present.Geological Society of America Special Paper,2004,379:83-96.
    [7]Jannasch H W.The chemosynthetic support of life and microbial diversity at deep-sea hydrothermal vents[J].Proceedings of the Royal Society of London,Series B,Biological Sciences,1985,225:277-297.
    [8]Karl D.Ecology of free-living,hydrothermal vent microbial communities[C]//The microbiology of deep-sea hydrothermal vents.Boca Raton,CRC Press,1995:35-124.
    [9]Juniper S K,Fouquet Y.Filamentous iron-silica deposits from modern and ancient hydrothermal site[J].Canadian Mineralogist,1988,26:859-869.
    [10]Eberhard C,Wirsen C O,Jannasch H W.Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deepsea hydrothermal vents[J].Geomicrobiology Journal,1995,13:145-164.
    [11]Metz S,Trefry J H,Nelson J A.History and Geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at 26N[J].Geochimica et Cosmochimica Acta,1988,52:2369-2378.
    [12]Glynn S,Mills R A,Palmer M R,et al.The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides[J].Earth and Planetary Science Letters,2006,244:170-185.
    [13]Severmann S,Mills R A,Palmer M R,et al.The role of prokaryotes in subsurface weathering of hydrothermal sediments:A combined geochemical and microbiological investigation[J].Geochimica et Cosmochimica Acta,2006,70:1677-1694.
    [14]Humphris S E,Herzig P M,Miller D J,et al.The internal structure of an active sea-floor massive sulphide deposit[J].Nature,1995,377:713-716.
    [15]Lalou C,Reyss J L,Brichet E,et al.Hydrothermal activity on a 105-year scale at a slow-spreading ridge,TAG hydrothermal field,Mid-Atlantic Ridge 26N[J].Journal of Geophysical Research,1995,100:17855-17862.
    [16]Rona P A,Bogdanov Y A,Gurvich E G,et al.Relict hydrothermal zones in the TAG hydrothermal field,Mid-Atlantic ridge 26 N,45 W[J].Journal of Geophysical Research,1993,98:9715-9730.
    [17]Rona P A,Fujioka K,Ishihara T,et al.An active low-temperature hydrothermal mound and a large inactive sulfide mound found in the TAG hydrothermal field,Mid-Atlantic Ridge 26N,45W[J].EOS Trans.AGU,1998,79:F920.
    [18]White S N,Humphris S E,Kleinrock M C.New observations on the distribution of past and present hydrothermal activity in the TAG area of the Mid-Atlantic Ridge(26 08'N)[J].Marine Geophysical Researches,1998,20:41-56.
    [19]Edwards K J,McCollom T M,Konishi H,et al.Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J].Geochimica et Cosmochimica Acta,2003,67:2843-2856.
    [20]Andrews G R.The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces[J].Biotechnology and Bioengineering,1988,31:378-381.
    [21]Konhauser K O.Introduction to Geomicrobiology[M].Blackwell Publishing Company,2011:192-234.
    [22]Verati C,de Donato P,Prieur D,et al.Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures(Pito Seamount Site,Easter microplate)[J].Chemical Geology,1999,158:257-269.
    [23]Lawrence J R,Kwong Y T J,Swerhone G D W.Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans[J].Canadian Journal of Microbiology,1997,43:178-188.
    [24]Chan C S,Fakra S C,Emerson D,et al.Lithotrophic ironoxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J].The ISME Journal,2011,5(4):717-727.
    [25]Suzuki T,Hashimoto H,Matsumoto N,et al.Nanometerscale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks[J].Applied Environmental Microbiology,2011,77:2877-2881.
    [26]Suzuki T,Hashimoto H,Itadani A,Matsumoto N,et al.Silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks[J].Applied Environmental Microbiology,2012,78:236-241.
    [27]Staudigel H,Furnes H,McLoughlin N,et al.3.5billion years of glass bioalteration:Volcanic rocks as a basis for microbial life?[J].Earth-Science Reviews,2008,89:156-176.
    [28]Cockell C S,van Calsteren P,Mosselmans J F W,et al.Microbial endolithic colonization and the geochemical environment in young seafloor basalts[J].Chemical Geology,2010,279:17-30.
    [29]Foriel J,Philippot P,Susini J,et al.High-resolution imaging of sulfur oxidation states,trace elements,and organic molecules distribution in individual microfossils and contemporary microbial filaments[J].Geochimica et Cosmochimica Acta,2004,68:1561-1569.
    [30]Zierenberg R A,Schiffman P.Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J].Nature,1990,348:155-157.
    [31]Herzig P M,Hannington M D,Scott S D,et al.Gold-rich seafloor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge[J].Economic Geology,1991,86:1747-1755.
    [32]Tivey M K,Humphris S E,Thompson G,et al.Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data[J].Journal of Geophysical Research,1995,100:12427-12555.
    [33]Wacey D,Saunders M,Brasier M D,et al.Earliest microbially mediated pyrite oxidation in~3.4billion-year-old sediments[J].Earth and Planetary Science Letters,2011,301:393-402.
    [34]Lengke M,Southam G.The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J].Geochimica et Cosmochimica Acta,2004,69:3759-3772.
    [35]Reith F,Etschmann B,Grosse C,et al.Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106:17757-17762.
    [36]Reith F,Fairbrother L,Nolze G,et al.Nanoparticle factories:Biofilms hold the key to gold dispersion and nugget formation[J].Geology,2010,38:843-846.
    [37]Reith F,Stewart L,Wakelin S A.Supergene gold transformation:Secondary and nano-particulate gold from southern New Zealand[J].Chemical Geology,2012,320 321:32-45.
    [38]Fitz R M,Cypionka H.Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans[J].Archives of Microbiology,1990,154:400-406.
    [39]Lengke M F,Southam G.The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J].Geochimica et Cosmochimica Acta,2005,69:3759-3772.
    [40]Lengke M F,Southam G.Bioaccumulation of gold by sulfatereducing bacteria cultured in the presence of gold(I)-thiosulfate complex[J].Geochimica et Cosmochimica Acta,2006,70:3646-3661.
    [41]Lengke M F,Southam G.The deposition of elemental gold from gold(I)-thiosulfate complex mediated by sulfate-reducing bacterial conditions[J].Economic Geology,2007,102:109-126.
    [42]Herzig P M,Hannington M D.Polymetallic massive sulfides at the modem seafloor:A review[J].Ore Geology Reviews,1995,10:95-115
    [43]Wirsen C O,Jannasch H W,Molyneaux S J.Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites[J].Journal of Geophysical Research,1993,98:9693-9703.
    [44]Polz M F,Robinson J J,Cavanaugh C M,et al.Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site[J].Limnology and Oceanography,1998,43:1631-1638.
    [45]Emerson D,Moyer C L.Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J].Applied and environmental microbiology,2002,68:3085-3093.
    [46]Kennedy C B,Scott S D,Ferris F G.Characterization of bacteriogenic iron oxide deposits from Axial Volcano,Juan de Fuca Ridge,Northeast Pacific Ocean[J].Geomicrobiology Journal,2003,20:199-214.
    [47]Fortin D,Langley S.Formation and occurrence of biogenic iron-rich minerals[J].Earth-Science Reviews,2005,72:1-19.
    [48]Langley S,Igric P,Takahashi Y,et al.Preliminary characterization and biological reduction of putative biogenic iron oxides(BIOS)from the Tonga-Kermadec Arc,southwest Pacific Ocean[J].Geobiology,2009,7:35-49.
    [49]Peng X,Chen S,Zhou H,et al.Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge[J].Journal of Geophysical Research,2011,116:G03030,doi:10.1029/2011JG001691.
    [50]Sun Z,Zhou H,Glasby G P,et al.Formations of Fe-Mn-Si oxide and nontronite deposits:example from hydrothermal fields on the Valu Fa Ridge,Lau Basin[J].Journal of Asian Earth Sciences,2012,43:64-76.
    [51]Toner B M,Santelli C M,Marcus M A,et al.Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents:Juan de Fuca Ridge[J].Geochimica et Cosmochimica Acta,2009,73:388-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700