基于石墨烯晶体管的多巴胺检测微流控芯片
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microfluidic chip for dopamine detection based on graphene transistor
  • 作者:朱红伟 ; 王昊 ; 张中卫 ; 王国东 ; 张影 ; 石峰
  • 英文作者:ZHU Hong-wei;WANG Hao;ZHANG Zhong-wei;WANG Guo-dong;ZHANG Ying;SHI Feng;School of Physics and Electronic Information Engineering,Henan Polytechnic University;School of Electrical Engineering and Automation,Henan Polytechnic University;
  • 关键词:微流通道 ; 石墨烯场效应晶体管 ; 多巴胺检测 ; 电子迁移 ; 微电子学能带理论
  • 英文关键词:microfluidic channel;;graphene field effect transistor;;dopamine detection;;electron transfer;;energy band theory of microelectronics
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:河南理工大学物理与电子信息学院;河南理工大学电气工程与自动化学院;
  • 出版日期:2019-03-06
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.325
  • 基金:河南省教育厅高等学校重点科研项目基础研究计划资助项目(15A510026);; 国家自然科学基金资助项目(61405055);; 河南理工大学博士基金资助项目(B2014—028)
  • 语种:中文;
  • 页:CGQJ201903020
  • 页数:5
  • CN:03
  • ISSN:23-1537/TN
  • 分类号:77-80+84
摘要
设计并制备了一种集成液体栅极的石墨烯场效应晶体管的微流控芯片,利用其对多巴胺进行检测,研究了多巴胺分子对石墨烯场效应管转移特性的影响。将石墨烯转移到载玻片上作为导电通道和传感材料集成在微流通道内部,利用剥离(lift-off)工艺制作晶体管的源极和漏极,采用液体栅极的方法对晶体管的转移特性进行测试。同时,结合微电子学的能带理论,从电子迁移的角度出发,讨论了石墨烯和多巴胺之间的氧化还原反应。并采用金属Pt电极作为石墨烯晶体管的栅极,检测到了1 nmol/L浓度的多巴胺溶液。
        Liquid gated graphene field effect transistor is integrated into microfluidic chip for detection of dopamine. The electrical effect of dopamine on transfer properties of graphene field-effect transistor is studied.Graphene is transferred onto a glass slide as the conductive channel and sensing material. The drain and source electrodes of transistor are fabricated by lift-off process. Transfer characteristics of transistor is tested by liquid gate method. The redox reaction between graphene and dopamine is discussed combined with band theory,from the perspective of electron transfer. Pt is adopt as the grid electrode of graphene transistors and 1 nmol/L dopamine solution is detected.
引文
[1] Mc Nab F,Varrone A,Farde L,et al. Changes in cortical dopa-mine D1 receptor binding associated with cognitive training[J].Science Signaling,2009,323:800.
    [2] Matsumoto M,Hikosaka O. Two types of dopamine neurondistinctly convey positive and negative motivational signals[J].Nature,2009,459:837-841.
    [3] Zhang M,Liao C Z,Yao Y L,et al. High-performance dopaminesensors based on whole graphene solution-gated transistors[J].Advanced Functional Materials,2014,24:978-985.
    [4] Gao A,Lu N,Dai P,et al. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive e-lectrical detection of nucleic acids[J]. Nano Letters,2011,11:3974-3978.
    [5] Tang H,Lin P,Chan H,et al. Highly sensitive dopamine bio-sensors based on organic electrochemical transistors[J]. Biosen-sors and Bioelectronics,2011,26:4559-4563.
    [6] Zhu H W,Wang G D,Xie D,et al. Au nanoparticles enhancedfluorescence detection of DNA hybridization in picoliter micro-fluidic droplets[J]. Biomedical Microdevices,2014,16:479-485.
    [7] Zhu H W,Zhang N G,He R X,et al. Controllable fission of drop-lets and bubbles by pneumatic valve[J]. Microfluidics andNanofluidics,2011,10:1343-1349.
    [8]刘军山,肖庆龙,葛丹,等.一种用于多巴胺实时检测的集成微电极的微流控芯片[J].分析化学,2015,43(7):977-982.
    [9] Chen J H,Jang C,Xiao S,et al. Intrinsic and extrinsicperformance limits of graphene devices on Si O2[J]. Nat Nano,2008,3:206-209.
    [10] Wang H,Wu Y,Cong C,et al. Hysteresis of electronic transportin graphene transistors[J]. ACS Nano,2010,4:7221-7228.
    [11] Farmer D B,Golizadeh-Mojarad R,Perebeinos V,et al. Chemicaldoping and electron-hole conduction asymmetry in graphenedevices[J]. Nano Letters,2008,9:388-392.
    [12] Shim J,Lui C H,Ko T Y,et al. Water-gated charge doping ofgraphene induced by mica substrates[J]. Nano Letters,2012,12:648-654.
    [13] Tu X,Xie Q,Jiang S,et al. Electrochemical quartz crystalimpedance study on the overoxidation of polypyrrole-carbon nano-tubes composite film for amperometric detection of dopamine[J].Biosensors&bioelectronics,2007,22:2819-2826.
    [14] Kegeles L S,Abi-Dargham A,Frankle W G,et al. Increasedsynaptic dopamine function in associative regions of the striatumin schizophrenia[J]. Archives of General Psychiatry,2010,67:231.
    [15] Radosavljevi'c M,Freitag M,Thadani K V,et al. Nonvolatilemolecular memory elements based on ambipolar nanotube fieldeffect transistors[J]. Nano Letters,2002,2:761-764.
    [16] Della Pia E A,Chi Q,Macdonald J E,et al. Fast electron transferthrough a single molecule natively structured redox protein[J].Nanoscale,2012,4:7106-7113.
    [17] Della Pia E A,Chi Q,Macdonald J E,et al. Fast electron transferthrough a single molecule natively structured redox protein[J].Nanoscale,2012,4:7106-7113.
    [18] Levesque P L,Sabri S S,Aguirre C M,et al. Probing chargetransfer at surfaces using graphene transistors[J]. Nano Letters,2010,11:132-137.
    [19] Alwarappan S,Joshi R K,Ram M K,et al. Electron transfermechanism of cytochrome c at graphene electrode[J]. AppliedPhysics Letters,2010,96:263702-263703.
    [20] Imam S A,Deshpande T,Guermoune A,et al. Charge transferhysteresis in graphene dual-dielectric memory cell structures[J].Applied Physics Letters,2011,99:082109-082112.
    [21] Sudibya H G,He Q,Zhang H,et al. Electrical detection of metalions using field-effect transistors based on micropatterned reducedgraphene oxide films[J]. ACS Nano,2011,5:1990-1994.
    [22] Alwarappan S,Singh S R,Pillai S,et al. Direct electrochemistry ofglucose oxidase at a gold electrode modified with graphenenanosheets[J]. Analytical Letters,2012,45:746-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700