船舶表面微结构防污技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Surface Microstructure Antifouling Technology for Ship Hull
  • 作者:楼彤 ; 白秀琴 ; 袁成清 ; 杨宗澄
  • 英文作者:LOU Tong;BAI Xiu-qin;YUAN Cheng-qing;YANG Zong-cheng;Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety,Wuhan University of Technology;Key Laboratory of Marine Power Engineering & Technology(Ministry of Transport), Wuhan University of Technology;
  • 关键词:生物污损 ; 表面微结构 ; 防污机理 ; 微纳加工 ; 防污性能
  • 英文关键词:biofouling;;microstructure;;antifouling mechanism;;micro/nano processing;;antifouling performance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所;武汉理工大学船舶动力工程技术交通行业重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51379166);; 湖北省自然科学基金重点项目(2015CFA 127)~~
  • 语种:中文;
  • 页:BMJS201901015
  • 页数:12
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:115-126
摘要
海洋污损生物对船壳浸水表面的危害十分严重,基于表面微结构的防污技术是一种绿色防污方法,不会对海洋生态环境造成任何危害,近些年来得到了重点研究。文中分析了自然界中多种具有自清洁能力的动植物的表面微观结构特征;总结了表面微观结构防污机理研究方面的进展;阐述了几种现有的微观结构防污理论模型:ERI模型、纳米力梯度模型以及SEA模型。对当前常用的微米级结构、纳米级结构以及微纳复合结构的加工方法进行了综述;分析了目前微结构表面防污性能常用评价方法:实船试验方法、浅海浸泡试验方法、接触角试验方法、附着力测量试验方法以及生物附着试验方法。基于细菌、石莼孢子、硅藻和藤壶金星幼虫等典型海洋污损生物,对表面微结构的防污特性进行了分析,提出深入研究海洋污损生物的附着机理和表面微结构的防污机理,进而建立表面微结构的设计基准。多尺度微纳结构的快速精准加工和完善防污性能评价体系,是表面微结构防污发展中面临的难题和未来发展方向。
        Marine fouling organisms are very harmful to the immersed surface of the ship hull. The antifouling technology based on surface microstructure is a green antifouling method that will not cause any harm to the marine ecological environment, so it has been studied emphasically in recent years. The work analyzed the surface microstructure characteristics of many self-cleaning animals and plants in nature and summarized the research progress of surface microstructure antifouling mechanism. Moreover, several existing antifouling theoretical models of microstructure were described: engineered roughness index model, engineered nanoforce gradients model and surface energetic attachment model. The methods to process micron-scale structures, nano-scale structures and micro-nano-composite structures were reviewed and the common evaluation methods for antifouling performance of microstructures were discussed: real ship test method, shallow sea submergence test method, contact angle test method, adhesion measurement test method and biological adhesion test method. Based on typical marine fouling or-ganisms such as bacteria, ulva spores, diatoms and barnacle larvae, the antifouling properties of surface microstructures were analyzed. Then, the further studying of the adhesion mechanism of marine fouling organisms and antifouling mechanism of surface microstructure is proposed to establish surface microstructure design benchmark. The rapid and accurate processing of multi-scale micro/nano structure and the perfecting evaluation system of antifouling performance are the key problems and future directions in the development of surface microstructure antifouling technologies.
引文
[1]SCHULTZ M P.Effects of coating roughness and biofouling on ship resistance and powering[J].Biofouling,2007,23(5):331-341.
    [2]AL-JUHNI A A,NEWBY B Z.Incorporation of benzoic acid and sodium benzoate into silicone coatings and subsequent leaching of the compound from the incorporated coatings[J].Progress in organic coatings,2006,56(2-3):135-145.
    [3]BALL P.Engineering shark skin and other solutions[J].Nature,1999,400(6744):507-509.
    [4]BRENNAN A B,BANEY R H,CARMAN M L,et al.Surface topography for non-toxic bioadhesion control:US,7143709[P].2006-12-05.
    [5]GUENTHER J,DE N R.Surface microtopographies of tropical sea stars:Lack of an efficient physical defence mechanism against fouling[J].Biofouling,2007,23(6):419-429.
    [6]ZHENG J Y,LIN C G,ZHANG J W,et al.Antifouling performance of surface microtopographies based on sea star luidia quinaria[J].Key engineering materials,2013,562-565:1290-1295.
    [7]BERS A V,D'SOUZA F,KLIJNSTRA J W,et al.Chemical defence in mussels:Antifouling effect of crude extracts of the periostracum of the blue mussel mytilus edulis[J].Biofouling,2006,22(4):251-259.
    [8]王雄,白秀琴,袁成清.基于仿生的非光滑表面防污减阻技术发展现状分析[J].船舶工程,2015,37(6):1-5.WANG Xiong,BAI Xiu-qin,YUAN Cheng-qing.Analysis of present development on technologies of antifouling and drag reduction based on bionic non-smooth surface[J].Ship engineering,2015,37(6):1-5.
    [9]BAI X Q,XIE G T,FAN H,et al.Study on biomimetic preparation of shell surface microstructure for ship antifouling[J].Wear,2013,306(1-2):285-295.
    [10]MA J,SUN Y,GLEICHAUF K,et al.Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions[J].Langmuir,2011,27(16):10035-10040.
    [11]陈子飞.织构化有机硅改性涂层的制备及其海洋防污性能[D].宁波:中国科学院宁波材料技术与工程研究所,2016.CHEN Zi-fei.Antifouling performances of textured silicone modified coatings[D].Ningbo:Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,2016.
    [12]WATSON G S,GREEN D W,SCHWARZKOPF L,et al.A gecko skin micro/nano structure-a low adhesion,superhydrophobic,anti-wetting,self-cleaning,biocompatible,antibacterial surface[J].Acta biomaterialia,2015,21:109-122.
    [13]WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial&engineering chemistry,1936,28(8):988-994.
    [14]CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the faraday society,1944,40:546-551.
    [15]BERNTSSON K M,ANDREASSON H,JONSSON P R,et al.Reduction of barnacle recruitment on micro-textured surfaces:Analysis of effective topographic characteristics and evaluation of skin friction[J].Biofouling,2000,16(2-4):245-261.
    [16]CARMAN M L,ESTES T G,FEINBERG A W,et al.Engineered antifouling microtopographies-correlating wettability with cell attachment[J].Biofouling,2006,22(1-2):11-21.
    [17]SCARDINO A J,GUENTHER J,DE N R.Attachment point theory revisited:the fouling response to a microtextured matrix[J].Biofouling,2008,24(1):45-53.
    [18]SCARDINO A J,HARVEY E,DE N R.Testing attachment point theory:Diatom attachment on microtextured polyimide biomimics[J].Biofouling,2006,22(1):55-60.
    [19]SCHUMACHER J F,CARMAN M L,ESTES T G,et al.Engineered antifouling microtopographies-effect of feature size,geometry,and roughness on settlement of zoospores of the green alga ulva[J].Biofouling,2007,23(1):55-62.
    [20]LONG C J,SCHUMACHER J F,ROBINSON P A C,et al.A model that predicts the attachment behavior of ulva linza zoospores on surface topography[J].Biofouling,2010,26(4):411-419.
    [21]XIAO L,THOMPSON S E M,R?HRIG M,et al.Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores[J].Langmuir,2013,29(4):1093-1099.
    [22]XIAO L,FINLAY J A,R?HRIG M,et al.Topographic cues guide the attachment of diatom cells and algal zoospores[J].Biofouling,2018,34(1):86-97.
    [23]MAGIN C M,LONG C J,COOPER S P,et al.Engineered antifouling microtopographies:the role of reynolds number in a model that predicts attachment of zoospores of ulva and cells of cobetia marina[J].Biofouling,2010,26(6):719-727.
    [24]SCHUMACHER J F,LONG C J,CALLOW M E,et al.Engineered nanoforce gradients for inhibition of settlement(attachment)of swimming algal spores[J].Langmuir,2008,24(9):4931-4937.
    [25]DECKER J T,KIRSCHNER C M,LONG C J,et al.Engineered antifouling microtopographies:An energetic model that predicts cell attachment[J].Langmuir,2013,29(42):13023-13030.
    [26]ZHANG X,JIANG X N,SUN C.Micro-stereolithography of polymeric and ceramic microstructures[J].Sensors and actuators A:Physical,1999,77(2):149-156.
    [27]EBERT R,REGENFUSS P,KLOETZER S,et al.Process assembly forμm-scale SLS,reaction sintering,and CVD[C]//Fourth international symposium on laser precision microfabrication.International society for optics and photonics,USA:SPIE,2003.
    [28]NOH Y J,ARAI Y,TANO M,et al.Fabrication of large-area micro-lens arrays with fast tool control[J].International journal of precision engineering and manufacturing,2008,9(4):32-38.
    [29]郝丽春,孟永钢.微凹坑织构皮秒激光加工及摩擦磨损性能[J].机械工程与自动化,2017(1):1-3.HAO Li-chun,MENG Yong-gang.Micro-dimple surface texture picosecond laser processing and tribological properties[J].Mechanical engineering&automation,2017(1):1-3.
    [30]姜涛.功能性微结构表面的超短脉冲激光加工技术研究[D].哈尔滨:哈尔滨工业大学,2012.JIANG Tao.Research on ultrashort laser texturing of functionality micro-structured surfaces[D].Harbin:Harbin Institute of Technology,2012.
    [31]黄建衡,梁国文,李冀,等.飞秒激光制备多晶金刚石微结构阵列[J].中国激光,2017,44(3):99-105.HUANG Jian-heng,LIANG Guo-wen,LI Ji,et al.Femtosecond laser processing of polycrystalline diamond micro-structure array[J].Chinese journal of lasers,2017,44(3):99-105.
    [32]刘星,张伟,孙刚,等.超快激光加工的微结构界面对DLC薄膜磨损性能影响研究[J].真空科学与技术学报,2017,37(3):320-326.LIU Xing,ZHANG Wei,SUN Gang,et al.Impact of ultrafast laser micro-machining on surface and interfacial properties of diamond-like carbon coatings[J].Journal of vacuum science&technology,2017,37(3):320-326.
    [33]JIANG X,GU Q,YANG L,et al.Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles[J].Optics&laser technology,2015,71:1-5.
    [34]FANG F Z,XU Z W,HU X T,et al.Nano-photomask fabrication using focused ion beam direct writing[J].CIRP annals,2010,59(1):543-546.
    [35]IVANOVA E P,HASAN J,WEBB H K,et al.Bactericidal activity of black silicon[J].Nature communications,2013,4(4):2838.
    [36]FISHER L E,YANG Y,YUEN M F,et al.Bactericidal activity of biomimetic diamond nanocone surfaces[J].Biointerphases,2016,11(1):011-014.
    [37]刘聚坤.飞秒激光在半导体和聚合物材料上的超分辨纳米加工研究[D].上海:华东师范大学,2015.LIU Ju-kun.Super resolution nanofabrication on semiconductor and polymer materials by using femtosecond laser[D].Shanghai:East China Normal University,2015.
    [38]DICKSON M N,LIANG E I,RODRIGUEZ L A,et al.Nanopatterned polymer surfaces with bactericidal properties[J].Biointerphases,2015,10(2):021010.
    [39]KIM S,JUNG U T,KIM S K,et al.Nanostructured multifunctional surface with antireflective and antimicrobial characteristics[J].ACS applied materials&interfaces,2015,7(1):326-331.
    [40]VETTIGER P,CROSS G,DESPONT M,et al.The"millipede"-nanotechnology entering data storage[J].IEEEtransactions on nanotechnology,2002,1(1):39-55.
    [41]TEMIRYAZEV A.Pulse force nanolithography on hard surfaces using atomic force microscopy with a sharp single-crystal diamond tip[J].Diamond and related materials,2014,48(3):60-64.
    [42]CHEN Y J,HSU J H,LIN H N.Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process[J].Nanotechnology,2005,16(8):1112-1115.
    [43]王伟超.形貌可控的微纳复合结构制备及其浸润性研究[D].西安:西北大学,2017.WANG Wei-chao.Preparation and wettability analysis of micro-nano-composite-structures with controlled morphology[D].Xi'an:Northwest University,2017.
    [44]DENG X,MAMMEN L,BUTT H J,et al.Candle soot as a template for a transparent robust superamphiphobic coating[J].Science,2012,335(6064):67-70.
    [45]WOUTERS M,RENTROP C,WILLEMSEN P.Surface structuring and coating performance:Novel biocidefree nanocomposite coatings with anti-fouling and foulingrelease properties[J].Progress in organic coatings,2010,68(1-2):4-11.
    [46]MITIK-DINEVA N,WANG J,TRUONG V K,et al.Differences in colonisation of five marine bacteria on two types of glass surfaces[J].Biofouling,2009,25(7):621-631.
    [47]NAVABPOUR P,TEER D,SU X,et al.Optimisation of the properties of siloxane coatings as anti-biofouling coatings:Comparison of PACVD and hybrid PACVD-PVD coatings[J].Surface and coatings technology,2010,204(20):3188-3195.
    [48]HOLAH J T,THORPE R H.Cleanability in relation to bacterial retention on unused and abraded domestic sink materials[J].Journal of applied microbiology,1990,69(4):599-608.
    [49]TIMPERLEY D A,THORPE R H,HOLAH J T.Implications of engineering design in food industry hygiene[J].Springer netherlands,1992,223:379-393.
    [50]FLINT S,HARTLEY N.A modified selective medium for the detection of pseudomonas species that cause spoilage of milk and dairy products[J].International dairy journal,1996,6(2):223-230.
    [51]RAJAB F H,LIAUW C M,BENSON P S,et al.Production of hybrid macro/micro/nano surface structures on TI6AL4V surfaces by picosecond laser surface texturing and their antifouling characteristics[J].Colloids and surfaces B:biointerfaces,2017,160:688-696.
    [52]IVANOVA E P,HASAN J,WEBB H K,et al.Natural bactericidal surfaces:mechanical rupture of pseudomonas aeruginosa cells by cicada wings[J].Small,2012,8(16):2489-2494.
    [53]BUCH-M?NSON N,BONDE S,BOLINSSON J,et al.Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends[J].Advanced functional materials,2015,25(21):3246-3255.
    [54]EPSTEIN A K,HOCHBAUM A I,KIM P,et al.Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry[J].Nanotechnology,2011,22(49):494007.
    [55]NOWLIN K,BOSEMAN A,COVELL A,et al.Adhesion-dependent rupturing of saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces[J].Journal of the royal society interface,2015,12(102):20140999.
    [56]KELLEHER S M,HABIMANA O,LAWLER J,et al.Cicada wing surface topography:An investigation into the bactericidal properties of nanostructural features[J].ACSapplied materials&interfaces,2015,8(24):14966-14974.
    [57]POGODIN S,HASAN J,BAULIN V A,et al.Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces[J].Biophysical journal,2013,104(4):835-840.
    [58]HIZAL F,CHOI C H,BUSSCHER H J,et al.Staphylococcal adhesion,detachment and transmission on nanopillared Si surfaces[J].ACS applied materials&interfaces,2016,8(44):30430-30439.
    [59]CALLOW M E,JENNINGS A R,BRENNAN A B,et al.Microtopographic cues for settlement of zoospores of the green fouling alga enteromorpha[J].Biofouling,2002,18(3):229-236.
    [60]ROSENHAHN A,SENDRA G H.Surface sensing and settlement strategies of marine biofouling organisms[J].Biointerphases,2012,7(1-4):63.
    [61]CALLOW J A,CALLOW M E.The ulva spore adhesive system[J].Springer berlin heidelberg,2006,44(4):63-78.
    [62]DECKER J T,SHEATS J T,BRENNAN A B.Engineered antifouling microtopographies:Surface pattern effects on cell distribution[J].Langmuir,2014,30(50):15212-15218.
    [63]COOPER S P,FINLAY J A,CONE G,et al.Engineered antifouling microtopographies:kinetic analysis of the attachment of zoospores of the green alga ulva to silicone elastomers[J].Biofouling,2011,27(8):881-892.
    [64]SCHUMACHER J F,ALDRED N,CALLOW M E,et al.Species-specific engineered antifouling topographies:correlations between the settlement of algal zoospores and barnacle cyprids[J].Biofouling,2007,23(5):307-317.
    [65]SULLIVAN T,REGAN F.Marine diatom settlement on microtextured materials in static field trials[J].Journal of materials science,2017,52(10):5846-5856.
    [66]K?HLER J,HANSEN P D,WAHL M.Colonization patterns at the substratum-water interface:How does surface microtopography influence recruitment patterns of sessile organisms?[J].Biofouling,1999,14(3):237-248.
    [67]AKESSO L,PETTITT M E,CALLOW J A,et al.The potential of nano-structured silicon oxide type coatings deposited by pacvd for control of aquatic biofouling[J].Biofouling,2009,25(1):55-67.
    [68]FANG J,KELARAKIS A,WANG D,et al.Fouling release nanostructured coatings based on pdms-polyurea segmented copolymers[J].Polymer,2010,51(12):2636-2642.
    [69]MARUZZO D,CONLAN S,ALDRED N,et al.Video observation of surface exploration in cyprids of balanus amphitrite:the movements of antennular sensory setae[J].Biofouling,2011,27(2):225-239.
    [70]ALDRED N,SCARDINO A,CAVACO A,et al.Attachment strength is a key factor in the selection of surfaces by barnacle cyprids(balanus amphitrite)during settlement[J].Biofouling,2010,26(3):287-299.
    [71]PETRONIS?,BERNTSSON K,GOLD J,et al.Design and microstructuring of pdms surfaces for improved marine biofouling resistance[J].Journal of biomaterials science,polymer edition,2000,11(10):1051-1072.
    [72]BERS A V,PRENDERGAST G S,ZüRN C M,et al.Acomparative study of the anti-settlement properties of mytilid shells[J].Biology letters,2006,2(1):88-91.
    [73]常江凡,白秀琴,袁成清.船用防污涂料浅海浸泡试验防污性能评价方法[J].船舶工程,2017(7):61-64.CHANG Jiang-fan,BAI Xiu-qin,YUAN Cheng-qing.Evaluation method of anti-fouling performance for marine anti-fouling coating panel submerging in shallow sea[J].Ship engineering,2017(7):61-64.
    [74]段东霞,蔺存国.一种利用白脊藤壶金星幼虫进行防污能力评价的快速测定方法:中国,CN102495079A[P].2012-06-13.DUAN Dong-xia,LIN Cun-guo.A rapid method for evaluating the antifouling ability of venusian larvae in white ridged barnacle:China,CN102495079A[P].2012-06-13.
    [75]许春生,王天立,姚敬华,等.藤壶剪切强度试验及探讨[J].涂料工业,2018,48(1):59-62.XU Chun-sheng,WANG Tian-li,YAO Jing-hua,et al.Research on measurement of barnacle adhesion strength in shear[J].Paint&coatings industry,2018,48(1):59-62.
    [76]刘红,张占平,齐育红,等.无毒防污涂料表面底栖硅藻附着评价的实验方法[J].海洋环境科学,2006,25(3):89-92.LIU Hong,ZHANG Zhan-ping,QI Yu-hong,et al.Experimental methods of evaluating biofouling of marine benthic diatoms on non-toxic antifouling coating[J].Marine environmental science,2006,25(3):89-92.
    [77]钱斯文,董树华,刘勇,等.低表面能涂料防污性能评价的快速试验方法[J].新技术新工艺,2008(8):66-69.QIAN Si-wen,DONG Shu-hua,LIU Yong,et al.Quick test method for antifouling performance of the low surface energy coatings[J].New technology&new process,2008(8):66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700