太赫兹近场涡旋光束的干涉
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interference of Near-Field Terahertz Vortex Beams
  • 作者:茅晨曦 ; 臧小飞 ; 朱亦鸣
  • 英文作者:Mao Chenxi;Zang Xiaofei;Zhu Yiming;Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology;
  • 关键词:物理光学 ; 轨道角动量 ; 近场 ; 涡旋光束 ; 干涉
  • 英文关键词:physical optics;;orbital angular momentum;;near-field;;vortex beam;;interference
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:上海理工大学上海市现代光学系统重点实验室;上海理工大学光电信息与计算机工程学院;
  • 出版日期:2018-09-07 11:22
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.505
  • 基金:上海市自然科学基金(18ZR1425600)
  • 语种:中文;
  • 页:JJZZ201901044
  • 页数:7
  • CN:01
  • ISSN:31-1339/TN
  • 分类号:346-352
摘要
设计了一种近场涡旋光束干涉的微结构阵列。在该阵列中,一对正交排列的矩形小孔构成阿基米德螺旋线。在线偏振太赫兹波的激励下,其左旋和右旋分量分别形成具有异号拓扑荷数的近场涡旋光束,并叠加产生新的电场分布。数值仿真结果表明,通过调控每个矩形小孔的角度和螺旋线的螺距,可实现任意拓扑荷数的正交涡旋光束的电场叠加。
        A microstructural array to generate the interference of near-field vortex beams is designed,in which an Archimedean spiral line is formed by apair of orthogonally arranged rectangular holes.Upon the excitation of a linearly polarized terahertz beam,the near field vortex beams with different topological charge numbers are formed by their left-handed and right-handed components and superimposed to generate a new field distribution.The numerical simulation results show that the field superposition of orthogonal vortex beams with arbitrary topological charge numbers can be achieved by the adjustments of the angle of each rectangular hole and the pitch of the helix.
引文
[1]Mirhosseini M,Maga1a-Loaiza O S,Chen C C,et al.Rapid generation of light beams carrying orbital angular momentum[J].Optics Express,2013,21(25):30196-30203.
    [2]Padgett M,Bowman R.Tweezers with a twist[J].Nature Photonics,2011,5(6):343-348.
    [3]Nicolas A,Veissier L,Giner L,et al.A quantum memory for orbital angular momentum photonic qubits[J].Nature Photonics,2014,8(3):234-238.
    [4]Tsai W Y,Huang J S,Huang C B.Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral[J].Nano Letters,2014,14(2):547-552.
    [5]Miao P,Zhang Z F,Sun J B,et al.Orbital angular momentum microlaser[J].Science,2016,353(6298):464-467.
    [6]Lin J,Mueller J P B,Wang Q,et al.Polarizationcontrolled tunable directional coupling of surface plasmon polaritons[J].Science,2013,340(6130):331-334.
    [7]Chen C F,Ku C T,Tai Y H,et al.Creating optical near-field orbital angular momentum in a gold metasurface[J].Nano Letters,2015,15(4):2746-2750.
    [8]Zhou H L,Dong J J,Zhou Y F,et al.Designing appointed and multiple focuses with plasmonic vortex lenses[J].IEEE Photonics Journal,2015,7(4):1-7.
    [9]Ren H,Li X,Zhang Q,et al.On-chip noninterference angular momentum multiplexing of broadband light[J].Science,2016,352(6287):805-809.
    [10]Maguid E,Yulevich I,Veksler D,et al.Photonic spin-controlled multifunctional shared-aperture antenna array[J].Science,2016,352(6290):1202-1206.
    [11]Li Y,Mo W C,Yang Z G,et al.Generation of terahertz vortex beams based on metasurface antenna array[J].Laser Technology,2017,41(5):644-648.李瑶,莫伟成,杨振刚,等.利用超表面天线阵列产生太赫兹涡旋光束[J].激光技术,2017,41(5):644-648.
    [12]Wang B,Zhang Y.Design and applications of THz metamaterials and metasurfaces[J].Journal of Terahertz Science and Electronic Information Technology,2015,13(1):1-12.王波,张岩.太赫兹超材料和超表面器件的研发与应用[J].太赫兹科学与电子信息学报,2015,13(1):1-12.
    [13]Liu J F,Liu S,Fu X J,et al.Terahertz information metamaterials and metasurfaces[J].Journal of Radars,2018,7(1):46-55.刘峻峰,刘硕,傅晓建,等.太赫兹信息超材料与超表面[J].雷达学报,2018,7(1):46-55.
    [14]Spektor G,David A,Gjonaj B,et al.Metafocusing by a metaspiral plasmonic lens[J].Nano Letters,2015,15(9):5739-5743.
    [15]Lee S Y,Kim S J,Kwon H,et al.Spin-direction control of high-order plasmonic vortex with doublering distributed nanoslits[J].IEEE Photonics Technology Letters,2015,27(7):705-708.
    [16]Huang F,Jiang X Q,Yuan H M,et al.Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses[J].Optics Letters,2016,41(7):1684-1687.
    [17]Yin X,Ye Z,Rho J,et al.Photonic spin hall effect at metasurfaces[J].Science,2013,339(6126):1405-1407.
    [18]Gorodetski Y,Niv A,Kleiner V,et al.Observation of the spin-based plasmonic effect in nanoscale structures[J].Physical Review Letters,2008,101(4):043903.
    [19]Wang Y,Zhao P,Feng X,et al.Dynamically sculpturing plasmonic vortices:from integer to fractional orbital angular momentum[J].Scientific Reports,2016,6:36269.
    [20]Spektor G,Kilbane D,Mahro A K,et al.Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J].Science,2017,355(6330):1187-1191.
    [21]Gorodetski Y,Shitrit N,Bretner I,et al.Observation of optical spin symmetry breaking in nanoapertures[J].Nano Letters,2009,9(8):3016-3019.
    [22]Shitrit N,Bretner I,Gorodetski Y,et al.Optical spin hall effects in plasmonic chains[J].Nano Letters,2011,11(5):2038-2042.
    [23]Spektor G,David A,Gjonaj B,et al.Linearly dichroic plasmonic lens and hetero-chiral structures[J].Optics Express,2016,24(3):2436-2442.
    [24]Yue F Y,Wen D D,Zhang C M,et al.Multichannel polarization-controllable superpositions of orbital angular momentum states[J].Advanced Materials,2017,29(15):1603838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700