孔隙度反演回剥法在储层物性定量预测中的应用:以珠Ⅲ坳陷文昌区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Porosity Inversion Method to Reservoir Quantitative Prediction:Taking Wenchang Area in Zhu Ⅲ Depression as an Example
  • 作者:陆江 ; 赵彦璞 ; 朱沛苑 ; 元庆涛 ; 李胜勇 ; 邓孝亮
  • 英文作者:Lu Jiang;Zhao Yanpu;Zhu Peiyuan;Yuan Qingtao;Li Shengyong;Deng Xiaoliang;Zhanjiang Branch Company,CNOOC;Faculty of Earth Resources,China University of Geosciences(Wuhan);
  • 关键词:孔隙度回剥反演 ; 成岩演化 ; 储层物性 ; 文昌A凹陷
  • 英文关键词:porosity inversion;;diagenetic evolution;;reservoir property;;Wenchang A Depression
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中海石油(中国)有限公司湛江分公司;中国地质大学(武汉)资源学院;
  • 出版日期:2018-11-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.183
  • 基金:“十三五”国家重大专项“南海西部海域低渗油藏勘探开发关键技术”(2016ZX05024-006)
  • 语种:中文;
  • 页:DZKQ201806013
  • 页数:10
  • CN:06
  • ISSN:42-1240/P
  • 分类号:111-120
摘要
储层孔隙度演化定量研究可以揭示实际孔隙度演化过程,为油气勘探靶区优选提供指导。利用埋藏演化史、热史分析及流体包裹体等资料,结合储层成岩特征,建立了文昌凹陷流体-成岩演化序列,包括4个阶段:第一阶段(初始沉积至28Ma),地层流体为中-偏弱酸性,发生压实作用,形成少量黄铁矿;第二阶段(28~21 Ma),地层流体为酸性,发生长石溶解、石英加大及自生高岭石沉淀;第三阶段(21~5.3Ma),地层流体为碱性,发生石英颗粒及其加大边的溶解、碳酸盐胶结,该阶段在18.5~18.3Ma和15~8.3Ma期间发生了2期油气充注;第四阶段(5.3Ma至现今),地层流体为酸性,发生第二期酸性溶解。以该成岩演化序列为约束,结合面孔率-孔隙度之间的转化关系,确定了各期成岩作用对储层孔隙度的贡献量,进而恢复了各地质历史时期的真实孔隙度。在此基础上建立了不同岩性、不同胶结物含量以及现今不同埋深下的孔隙度演化预测图,将控制储层物性演化的微观参数转化为宏观模型,该预测图进一步明确了文昌A凹陷珠海组低渗"甜点"储层控制因素,提高了储层预测的准确率。本次研究证实在成岩演化序列约束下,孔隙度反演回剥法可以实现储层物性的定量预测,对油气勘探开发具有重要指导意义。
        This paper uses burial history,thermal history,fluid inclusion data and digenetic features to build a fluid-diagenetic sequence.From initial deposition to 28 Ma,the formation fluid is neutral to slightly acidic,mainly developed with compaction and a small amount of pyrite.From 28 to 21 Ma,when the formation fluids were transformed into acid with the release of organic acids,feldspar dissolution and quartz overgrowth occurred.Subsequently,from 21 to 5.3 Ma,the formation fluids were converted into alkaline,with two phases of hydrocarbon charging and carbonate cements developed at the same time.Dating back from 5.3 Ma to nowadays,the mantle-derived carbon dioxide turned the formation fluid to acidic,with the occurrence of the second phase of the acid dissolution.Taking the fluid as a constraint,we can restore the porosity in geological history,combined with surface porosity-porosity conversion chart.On this basis,quantified prediction charts were established under different sorting and cement,which can convert the microscopic parameters of reservoir properties to macroscopic model.The forecast chart produced good results in Wenchang A Depression with a 77.8% accuracy rate.This application confirms that this method indeed has constructive significance for improving the accuracy of reservoir prediction.This study has important implications for further clarified hypotonic "dessert" reservoir controlling factors of Zhuhai Formation in Wenchang A depression to improve the accuracy of reservoir prediction.
引文
[1] Jiang H,Pang X,Shi H,et al.Source rock characteristics and hydrocarbon expulsion potential of the Middle Eocene Wenchang Formation in the Huizhou Depression,Pearl River Mouth Basin,South China Sea[J].Marine&Petroleum Geology,2015,67:635-652.
    [2] Peng J,Pang X,Peng H,et al.Geochemistry,origin,and accumulation of petroleum in the Eocene Wenchang Formation reservoirs in Pearl River Mouth Basin,South China Sea:A case study of HZ25-7 Oilfield[J].Marine&Petroleum Geology,2016,80:154-170.
    [3] Cheng P,Tian H,Huang B J,et al.Tracing early-charged oils and exploration directions for the Wenchang A Sag,western Pearl River Mouth Basin,offshore South China Sea[J].Organic Geochemistry,2013,61(6):15-26.
    [4] Quan Y,Liu J,Hao F,et al.The origin and distribution of crude oil in Zhu III sub-basin,Pearl River Mouth Basin,China[J].Marine&Petroleum Geology,2015,66:732-747.
    [5]张莉,朱筱敏,钟大康,等.惠民凹陷古近系砂岩储层物性控制因素评价[J].吉林大学学报:地球科学版,2007,37(1):105-111.
    [6] Zhen Z,Tong H M,Bao Z D.Development characteristics and quantitative prediction of reservoir fractures in the Chaoyanggou oilfield[J].Mining Science and Technology(China),2009,19(3):373-379.
    [7] Hou J,Luo F,Wang C,et al.Quantitative prediction model for the water-oil relative permeability curve and its application in reservoir numerical simulation.Part 1:Modeling[J].Energy&Fuels,2011,25(10):4405-4413.
    [8] Liu L,Tang D,Xu H,et al.Reservoir prediction of deep-waterturbidite sandstones with seismic lithofacies control:A case study in the C block of lower Congo Basin[J].Marine&Petroleum Geology,2016,71:1-11.
    [9] Sun H,Zhong D.Origin and forming process of the porosity in volcanic hydrocarbon reservoirs of China[J].Journal of Volcanology&Geothermal Research,2017,350.
    [10]张莉,朱筱敏,钟大康,等.惠民凹陷古近系碎屑岩次生孔隙纵向分布规律[J].地球科学:中国地质大学学报,2007,32(2):253-259.
    [11]操应长,葸克来,王艳忠,等.冀中坳陷廊固凹陷河西务构造带古近系沙河街组四段储集层孔隙度演化定量研究[J].古地理学报,2013,15(5):593-604.
    [12]季洪泉,王新海.珠江口盆地西部文昌A凹陷油气勘探潜力分析与预测[J].天然气地球科学,2004,15(3):238-242.
    [13]尤丽,李才,刘景环.文昌A凹陷珠海组储层区域成岩作用特征及定量评价[J].东北石油大学学报,2012,36(2):7-13.
    [14]渠冬芳,姜振学,刘惠民,等.关键成藏期碎屑岩储层古孔隙度恢复方法[J].石油学报,2012,33(3):404-413.
    [15]李荣西,席胜利,邸领军.用储层油气包裹体岩相学确定油气成藏期次:以鄂尔多斯盆地陇东油田为例[J].石油与天然气地质,2006,27(2):194-199.
    [16]王琪,肖立新.石油侵位对碎屑储集岩成岩序列的影响及其与孔隙演化的关系[J].沉积学报,1998,16(3):97-101.
    [17]陈林,许涛,石好果,等.准噶尔盆地中部1区块侏罗系三工河组毯砂成藏期孔隙度恢复及其意义[J].石油与天然气地质,2014,35(4):486-493.
    [18]尤丽,李才,张迎朝,等.珠江口盆地文昌A凹陷珠海组储层碳酸盐胶结物分布规律及成因机制[J].石油与天然气地质,2012,33(6):883-889.
    [19]禚喜准,王琪,陈国俊,等.恩平凹陷恩平组下段成岩过程分析与储层动态评价[J].沉积学报,2008,26(2):257-264.
    [20]陈瑞银,罗晓容,吴亚生.利用成岩序列建立油气输导格架[J].石油学报,2007,28(6):43-46.
    [21] Heydari E,Wade W J.Massive recrystallization of Low-Mg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis[J].AAPG Bulletin,2002,86(7):1285-1303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700