弹性应变能对沉淀组织及原子占位影响的微观相场模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic phase field modeling on the influence of elastic strain energy on the precipitate microstructure and atomic site occupancy
  • 作者:张静 ; 陈铮 ; 王永欣 ; 童立甲
  • 英文作者:Zhang Jing;Chen Zheng;Wang Yongxin;Tong Lijia;State Key Laboratory of Solidification Processing;School of Materials Science and Engineering,Northwestern Polytechnical University;
  • 关键词:组织演化 ; 原子占位 ; 共格沉淀组织 ; 微观相场 ; 微观组织表征
  • 英文关键词:microstructure evolution;;atomic site occupancy;;coherent precipitate microstructure;;microscopic phase field;;micro-structure characterization
  • 中文刊名:ZKZX
  • 英文刊名:China Sciencepaper
  • 机构:凝固技术国家重点实验室;西北工业大学材料学院;
  • 出版日期:2015-08-23
  • 出版单位:中国科技论文
  • 年:2015
  • 期:v.10
  • 基金:高等学校博士学科点专项科研基金资助项目(20136102120021);; 中央高校基本科研业务费专项资金资助项目(3102014JCQ01024);; 凝固技术国家重点实验室自主研究课题资助项目(114-QP-2014)
  • 语种:中文;
  • 页:ZKZX201516006
  • 页数:6
  • CN:16
  • ISSN:10-1033/N
  • 分类号:27-32
摘要
利用时间相关的微观相场法模拟弹性应变作用下Ni75AlxV25-x合金Ni3Al和Ni3V共格沉淀取向排列组织演化,明晰应变能对取向排列组织形貌的影响,追踪Ni3Al和Ni3V沉淀相形核、长大过程的原子占位解析取向排列的微观原子特征。计算结果表明:应变能阻碍形核,改变沉淀相Ni3Al和Ni3V的析出序列,诱发原子取向扩散形成取向排列组织;取向排列组织受温度和合金成分影响,低温下2相取向不明显,温度较高时,取向排列倾向加强。Al成分较低时,取向排列明显;Al成分增加,取向排列倾向弱化。原子占位的时间演化曲线定量表征了沉淀相析出全过程Ni、Al、V 3种组元在有序沉淀相Ni3Al和Ni3V的亚晶格位置的占位随时间演化,应变能推迟了Ni3Al相VNi、NiAl、VAl原子占位达到平衡的时间,但对NiNi和AlNi的占位达到平衡的时间并无大的影响。应变能抑制了Ni3V相反位缺陷VNiⅡ、NiV和第3组元占位AlNiⅠ、AlNiⅡ、AlV,诱发了反位缺陷VNiⅠ。
        A time dependent microscopic phase field model was applied to simulate the temporal evolution of directional arrangement microstructures caused by coherent Ni3 Al and Ni3 V precipitates in Ni75AlxV25-xalloy upon the action of elastic strain energy.The influence of elastic strain energy on the directional arrangement microstructures and morphology was illustrated,and their atomic characteristics were demonstrated by tracing the atomic site occupancies during the nucleation and growth process of Ni3 Al and Ni3 V precipitates.The computational results indicate that the elastic strain energy hinders nucleation,changes the precipitate sequence of Ni3 Al and Ni3 V phase,and induces the directional diffusion of components forming directional arrangement microstructure,which shows temperature and composition correlation.The directional arrangement is not evident at relatively low temperature or high Al content;however,atelevated temperature or low Al content,the directional arrangement becomes obvious.The temporal evolution of atomic site occupancy with time quantitatively characterizes the evolution of site occupancy for Ni,Al,and V components at the sublattices of both Ni3 Al and Ni3 V phases during the whole precipitation process.For Ni3 Al phase,the elastic strain energy impedes the atomic site occupancy of VNi,NiAl,VAl,but has little effect on NiNiand AlNi.For Ni3 V phase,the elastic strain energy restrains the antisite defect of VNiII,Nivand ternary alloying element AlNiI,AlNiII,Alv,but induces antisite defect VNiI.
引文
[1] Khachaturyan A G.Theory of Structural Transformation in Solids[M].New York:Wiley,1983:129-273.
    [2] Chen Longqing.Phase-field models for microstructure evolution[J].Annual Review of Materials Resrarch,2002,32(1):113-140.
    [3] Hu S Y,Chen L Q.A phase-field model for evolving microstructures with strong elastic inhomogeneity[J].Acta Materialia,2001,49(11):1879-1890.
    [4] Wang Y,Banerjee D,Su C C,et al.Field kinetic model and computer simulation of precipitation of L12ordered intermetallic from fcc solid solution[J].Acta Materialia,1998,46(9):2983-3001.
    [5] Wang Y,Chen L Q,Khachaturyan A G.Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap[J].Acta Metallurgicaetet Materialia,1993,41(1):279-296.
    [6] Doi M.Elasticity effects on the microstructure of alloys containing coherent precipitates[J].Progress in Materials Science,1996,40(2):79-180.
    [7] Fratzl P,Penrose O,Lebowitz J L.Modeling of phase separation in alloys with coherent elastic misfit[J].Journal of Statistical Physics,1999,95(5/6):1429-1503.
    [8] Shibuya S,Kaneno Y,Yoshida M,et al.Mechanical properties of dual multi-phase single-crystal intermetallic alloy composed of geometrically close packed Ni3X(X:Al and V)type structures[J].Intermetallics,2007,15(2):119-127.
    [9] Ofori A P,Rossouw C J,Humphreys C J.Determining the site occupancy of Ru in the L12 phase of a Ni-base superalloy using ALCHEMI[J].Acta Materialia,2005,53(1):97-110.
    [10]Wu Y P,Tso N C,Sanchez J M,et al.Modeling of ternary site occupation in L12 ordered intermetallics[J].Acta Metallurgica,1989,37(10):2835-2840.
    [11]Würschum R,Badura-Gergen K,Kümmerle E A,et al.Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies[J].Physical Review B,1996,54(2):849-856.
    [12]Numakura H,Ikeda T,Nakajima H,et al.Diffusion in Ni3Al,Ni3Ga and Ni3Ge[J].Materials Science and Engineering:A,2001,312(1/2):109-117.
    [13]Mekhrabov A O,Akdeniz M V.Effect of ternary alloying elements addition on atomic ordering characteristics of Fe-Al intermetallics[J].Acta Materialia,1999,47(7):2067-2075.
    [14]Cabet E,Pasturel A,Ducastelle F,et al.L12-DO22competition in the pseudobinary(Pt,Rh)3V,Pt3(V,Ti),and(Pd,Rh)3V alloys:phase stability and electronic structure[J].Physical Review Letters,1996,76(17):3140-3143.
    [15]Xu J H,Oguchi T,Freeman A J.Solid-solution strengthening:substitution of V in Ni3Al and structural stability of Ni3(Al,V)[J].Physical Review B,1987,36(8):4186-4189.
    [16]Tanimura M,Hirata A,Koyama Y.Kinetic process of the phase separation in the alloy Ni3Al0.52 V0.48[J].Physical Review B,2004,70(9):article No.094111.
    [17]Prakash U,Buckley R A,Jones H,et al.DO22to L12transition in intermetallic systems[J].Journal of Materrials Science,1992,27(8):2001-2004.
    [18]Wang Jiansheng.Dislocation nucleation and the intrinsic fracture behavior of L12intermetallic alloys[J].Acta Materialia,1998,46(8):2663-2674.
    [19]Cheng K Y,Jo C Y,Kim D H,et al.Influence of local chemical segregation on theγ′directional coarsening behavior in single crystal superalloy CMSX-4[J].Materials Characterization,2009,60(3):210-218.
    [20]Pyczak F,Devrient B,Neuner F C,et al.The influence of different alloying elements on the development of theγ/γ′microstructure of nickel-base superalloys during high-temperature annealing and deformation[J].Acta Materialia,2005,53(14):3879-3891.
    [21]Tsukada Y,Koyama T,Murata Y,et al.Estimation ofγ/γ′diffusion mobility and three-dimensional phasefield simulation of rafting in a commercial nickel-based superalloy[J].Computational Materials Science,2014,83:371-374.
    [22]Kundin J,Mushongera L,Goehler T,et al.Phase-field modeling of theγ′-coarsening behavior in Ni-based superalloys[J].Acta Materialia,2012,60(9):3758-3772.
    [23]Zhao Kai,Lou Langhong.Rafting structure formation during solution treatment in a nickel-based superalloy[J].International Jouanal of Materials Research,2012,103(3):309-312.
    [24]Kim C S,Hyun C Y,Park I K,et al.Ultrasonic characterization for directional coarsening in a nickel-based superalloy during creep exposure[J].Journal of Nuclear Science and Technology,2012,49(4):366-372.
    [25]Sakaguchi M,Ike M,Okazaki M.Microstructural changes in a single crystal Ni-base superalloy induced by plastic straining[J].Materials Science and Engineerings:A,2012,534:253-259.
    [26]Vaithyanathan V,Chen L Q.Coarsening of ordered intermetallic precipitates with coherency stress[J].Acta Materialia,2002,50(16):4061-4073.
    [27]Onaka S,Kobayashi N,Fujii T,et al.Simplified energy analysis on the equilibrium shape of coherentγ′precipitates inγmatrix with a superspherical shape approximation[J].Intermetallics,2002,10(4):343-346.
    [28]冯端.金属物理学第二卷相变[M].2版.北京:科学出版社,1998:170-180.Feng Duan.Metal Physics:Second volume:Phase Change[M].2nd ed.Beijing:Science Press,1998:170-180.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700