搅拌摩擦增材制造的微观结构-力学性能一体化数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Integrated Modelling of Microstructure and Mechanical Property in Friction Stir Additive Manufacturing
  • 作者:张昭 ; 谭治军 ; 李健宇 ; 祖宇飞
  • 英文作者:ZHANG Zhao;TAN Zhijun;LI Jianyu;ZU Yufei;State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics,Dalian University of Technology;School of Aeronautics and Astronautics, Dalian University of Technology;
  • 关键词:增材制造 ; 搅拌摩擦增材制造 ; Monte ; Carlo法 ; 析出相 ; 力学性能 ; 重搅拌 ; 重加热
  • 英文关键词:Additive manufacturing;;Friction stir additive manufacturing;;Monte Carlo method;;Precipitate;;Mechanical property;;Re-stirring;;Re-heating
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:大连理工大学工程力学系工业装备结构分析国家重点实验室;大连理工大学航空航天学院;
  • 出版日期:2019-01-15
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(11572074)
  • 语种:中文;
  • 页:HKGJ2019Z1010
  • 页数:5
  • CN:Z1
  • ISSN:11-4387/V
  • 分类号:16-20
摘要
搅拌摩擦增材制造技术是在搅拌摩擦焊接的基础上发展起来的一种新型固态增材制造技术。针对搅拌摩擦增材制造技术中的重新搅拌和重新加热问题,采用试验和数据方法进行分析,通过Monte Carlo模型计算微观结构演化,通过析出相演化模型计算析出相分布,并进一步计算不同增材层之间的硬度分布,通过与试验测量数据的比较验证了模型的正确性。结果显示,不同增材层之间的晶粒大小和形貌由于重搅拌和重加热的作用而存在差异,同时,温度曲线的变化使粒子数和平均半径发生变化,进而导致力学性能出现差异。在试验验证的基础上,通过数值模拟解释了差异产生的具体机理。
        As a new solid state additive manufacturing technology, friction stir additive manufacturing is developed based on friction stir welding. For the re-stirring and re-heating phenomena in friction stir additive manufacturing, both experimental and numerical methods are used for analysis. Monte Carlo method is used to calculate the microstructural evolutions. The precipitate distributions are calculated by the developed precipitate evolution model. The hardness distributions on different additive manufactured layers are then calculated. Experimental data is compared to show the validities of the numerical models. Results indicate that different grain sizes and morphologies can be found due to the existences of restirring and re-heating. The variations of particle numbers and mean radii of precipitates on different layers, caused by different temperature histories, can lead to the different mechanical properties. The mechanism for the generation of different mechanical properties in different layers are explained by numerical simulations in combination with experimental validation.
引文
[1]PALANIVEL S,NELATURU P,GLASS B,et al.Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J].Materials&Design,2015,65:934-952.
    [2]MAO Y Q,KE L M,HUANG C P,et al.Formation characteristic,microstructure,and mechanical performances of aluminum-based components by friction stir additive manufacturing[J].International Journal of Advanced Manufacturing Technology,2016,83:1637-1647.
    [3]SHARMA A,VIJENDRA B,ITO K,et al.A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing[J].Journal of Manufacturing Processes,2017,26:122-130.
    [4]YU H Z,JONES M E,BRADY G W,et al.Non-beam-based metal additive manufacturing enabled by additive friction stir deposition[J].Scripta Materialia,2018,153:122-130.
    [5]东青,李卫东,杨滨,等.6061铝合金先进摩擦增材制造(AFAM)复合强化机理控性试验的研究[J].世界有色金属,2018,6:1-5.DONG Qing,LI Weidong,YANG Bin,et al.Experiments on strengthening the 6061aluminum alloy mechanical properties using advanced friction additive manufacturing(AFAM)process[J].World Nonferrous Metals,2018,6:1-5.
    [6]王忻凯,邢丽,徐卫平,等.工艺参数对铝合金搅拌摩擦增材制造成形的影响[J].材料工程,2015,43(5):8-12.WANG Xinkai,XING Li,XU Weiping,et al.Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J].Journal of Materials Engineering,2015,43(5):8-12.
    [7]孙金睿,朱海,赵华夏,等.铝合金搅拌摩擦增材制造工艺参数对成型效果的影响[J].热加工工艺,2018,47(15):37-42.SUN Jinrui,ZHU Hai,ZHAO Huaxia,et al.Influence of process parameters of friction stir additive manufacturing of aluminum alloy on forming effect[J].Hot Working Technology,2018,47(15):37-42.
    [8]RIAHI M,NAZARI H.Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J].International Journal of Advanced Manufacturing Technology,2011,55(1-4):143-152.
    [9]LIENHARD J H.A heat transfer textbook[M].Massachusetts:Phlogiston,2003.
    [10]ZHANG Z,WU Q,GRUJICIC M,et al.Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6[J].Journal of Materials Science,2016,51(4):1882-1895.
    [11]WU Q,ZHANG Z.Precipitation-induced grain growth simulation of friction-stir-welded AA6082-T6[J].Journal of Materials Engineering&Performance,2017,26(5):2179-2189.
    [12]张昭,吴奇,万震宇,等.基于蒙特卡洛方法的搅拌摩擦焊接晶粒生长模拟[J].塑性工程学报,2015,22(4):172-177.ZHANG Zhao,WU Qi,WAN Zhenyu,et al.Monte Carlo based simulation of grain growth in friction stir welding[J].Journal of Plasticity,2015,22(4):172-177.
    [13]张昭,胡超平,吴奇.基于三维蒙特卡洛方法的搅拌摩擦焊晶粒生长模拟[J].塑性工程学报,2017,24(3):231-236.ZHANG Zhao,HU Chaoping,WU Qi.Three dimensional Monte Carlo simulation of grain growth in friction stir welding[J].Journal of Platicity Engineering,2017,24(3):231-236.
    [14]ZHANG Z,WAN Z Y,LINDGRENL E,et al.The simulation of precipitation evolutions and mechanical properties in friction stir welding with post-weld heat treatments[J].Journal of Materials Engineer in g&Performance,2017,26(12):5731-5740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700