抗肿瘤血管生成治疗的纳米递送策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strategies of nano drug delivery system applied in anti-angiogenic therapy
  • 作者:杨杉 ; 徐程 ; 姚静
  • 英文作者:YANG Shan;XU Cheng;YAO Jing;School of Pharmacy,China Pharmaceutical University;
  • 关键词:肿瘤 ; 抗血管生成治疗 ; 纳米递药系统
  • 英文关键词:tumor;;anti-angiogenic therapy;;nano drug delivery system
  • 中文刊名:ZGYD
  • 英文刊名:Journal of China Pharmaceutical University
  • 机构:中国药科大学药学院;
  • 出版日期:2019-02-25
  • 出版单位:中国药科大学学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金资助项目(No.81773655);; 江苏省“六大人才高峰”资助项目(No.YY-001);; 江苏省“333工程”培养基金资助项目(No.BRA2017432)~~
  • 语种:中文;
  • 页:ZGYD201901002
  • 页数:8
  • CN:01
  • ISSN:32-1157/R
  • 分类号:14-21
摘要
抗肿瘤血管生成治疗应用范围广泛,恰如其分地运用纳米递药系统能够在发挥抗血管生成作用的同时达到增效减毒的效果。本文综述了纳米递药系统在抗肿瘤血管生成治疗中的应用,介绍了各类纳米粒子提高抗血管生成治疗疗效的策略与设计思路,以期为抗肿瘤血管生成治疗的深入研究提供理论参考。
        Anti-angiogenic therapy has a wide range of applications in the treatment of tumor. Nano drug delivery system can contribute to higher efficacy and lower toxicity in anti-angiogenic therapy. This article reviews the application of nano drug delivery system in anti-angiogenic therapy and introduces the strategies to improve its treatment efficiency with varieties of nanoparticles,providing reference for the development of anti-angiogenic therapy.
引文
[1] Jain RK. Antiangiogenesis strategies revisited:from starvingtumors to alleviating hypoxia[J]. Cancer Cell,2014,26(5):605-622.
    [2] Shi J,Kantoff PW,Wooster R,et al. Cancer nanomedicine:pro-gress,challenges and opportunities[J]. Nat Rev Cancer,2016,17(1):20-37.
    [3] Folkman J. Tumor angiogenesis:therapeutic implications[J]. NewEngl J Med,1971,285(21):1182-1186.
    [4] Jain RK. Normalizing tumor microenvironment to treat cancer:bench to bedside to biomarkers[J]. J Clin Oncol,2013,31(17):2205-2218.
    [5] Leung DW,Cachianes G,Kuang WJ,et al. Vascular endothelialgrowth factor is a secreted angiogenic mitogen[J]. Science,1989,246(4935):1306-1309.
    [6] Liang X,Xu F,Li X,et al. VEGF signal system:the application ofantiangiogenesis[J]. Curr Med Chem,2014,21(7):894-910.
    [7] Yang S,Gao H. Nanoparticles for modulating tumor microenviron-ment to improve drug delivery and tumor therapy[J]. PharmacolRes,2017,126:97-108.
    [8] Lee H,Lee HJ,Bae IJ,et al. Inhibition of STAT3/VEGF/CDK2axis signaling is critically involved in the antiangiogenic andapoptotic effects of arsenic herbal mixture PROS in non-smalllung cancer cells[J]. Oncotarget,2017,8(60):101771-101783.
    [9] Ferrara N,Adamis AP. Ten years of anti-vascular endothelialgrowth factor therapy[J]. Nat Rev Drug Discov,2016,15(6):385-403.
    [10] Jayson GC,Kerbel R,Ellis LM,et al. Antiangiogenic therapy inoncology:current status and future directions[J]. Lancet,2016,388(10043):518-529.
    [11] Raut CP,Nawrocki S,Lashinger LM,et al. Celecoxib inhibitsangiogenesis by inducing endothelial cell apoptosis in humanpancreatic tumor xenografts[J]. Cancer Biol Ther,2004,3(12):1217-1224.
    [12] Wang X,Shen Y,Li S,et al. Importance of the interactionbetween immune cells and tumor vasculature mediated by thalid-omide in cancer treatment[J]. Int J Mol Med,2016,38(4):1021-1029.
    [13] Norrby K. Low-molecular-weight heparins and angiogenesis[J].Apmis,2010,114(2):79-102.
    [14] Xu Y,Wen Z,Xu Z. Chitosan nanoparticles inhibit the growth ofhuman hepatocellular carcinoma xenografts through an antiangio-genic mechanism[J]. Anticancer Res,2009,29(12):5103-5109.
    [15] Lim DK,Wylie RG,Langer R,et al. Selective binding of C-6 OHsulfated hyaluronic acid to the angiogenic isoform of VEGF(165)[J]. Biomaterials,2016,77:130-138.
    [16] Kim GH,Won JE,Byeon Y,et al. Selective delivery of PLXDC1small interfering RNA to endothelial cells for anti-angiogenesistumor therapy using CD44-targeted chitosan nanoparticles for epi-thelial ovarian cancer[J]. Gynecol Endocrinol,2018,25(1):1-5.
    [17] Li Y,Wu Y,Huang L,et al. Sigma receptor-mediated targeteddelivery of anti-angiogenic multifunctional nanodrugs for combi-nation tumor therapy[J]. J Control Release,2016,228:107-119.
    [18] Xiong H,Wu YY,Jiang ZJ,et al. pH-activatable polymeric nano-drugs enhanced tumor chemo/antiangiogenic combination therapythrough improving targeting drug release[J]. J Colloid Interf Sci,2019,536:135-148.
    [19] Tian F,Dahmani FZ,Qiao JN,et al. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool toreverse multidrug resistance in breast cancer[J]. Acta Biomater,2018,75:398-412.
    [20] Sun F,Yu Y,Yang Z,et al. Hyaluronic acid-endostatin2-alft1(HA-ES2-AF)nanoparticle-like conjugate for the target treat-ment of diseases[J]. J Control Release,2018,288:1-13.
    [21] Ding Y,Ji T,Zhao Y,et al. Improvement of stability and efficacyof C16Y therapeutic peptide via molecular self-assembly intotumor-responsive nanoformulation[J]. Mol Cancer Ther,2015,14(10):2390-2400.
    [22] Mukherjee P,Bhattacharya R,Wang P,et al. Antiangiogenicproperties of gold nanoparticles[J]. Clin Cancer Res,2005,11(9):3530-3534.
    [23] Gurunathan S,Lee KJ,Kalishwaralal K,et al. Antiangiogenicproperties of silver nanoparticles[J]. Biomaterials,2009,30(31):6341-6350.
    [24] Li X,Wu M,Pan L,et al. Tumor vascular-targeted co-delivery ofanti-angiogenesis and chemotherapeutic agents by mesoporoussilica nanoparticle-based drug delivery system for synergetictherapy of tumor[J]. Int J Nanomed,2016,11(1):93-105.
    [25] Fu X,Yang Y,Li X,et al. RGD peptide-conjugated seleniumnanoparticles:antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway[J]. Nanomedicine,2016,12(6):1627-1639.
    [26] Lai PX,Chen CW,Wei SC,et al. Ultrastrong trapping of VEGFby graphene oxide:anti-angiogenesis application[J]. Biomateri-als,2016,109:12-22.
    [27] Balakrishnan S,Bhat FA,Raja SP,et al. Gold nanoparticle-conju-gated quercetin inhibits epithelial-mesenchymal transition,angio-genesis and invasiveness via EGFR/VEGFR-2-mediated pathwayin breast cancer[J]. Cell Prolif,2016,49(6):678-697.
    [28] Jiao M,Zhang P,Meng J,et al. Recent advancements in biocom-patible inorganic nanoparticles towards biomedical applications[J]. Biomater Sci,2018,6(4):726-745.
    [29] Burrows FJ,Thorpe PE. Eradication of large solid tumors in micewith an immunotoxin directed against tumor vasculature[J]. ProcNatl Acad Sci U S A,1993,90(19):8996-9000.
    [30] Kunjachan S,Detappe A,Kumar R,et al. Nanoparticle mediatedtumor vascular disruption:a novel strategy in radiation therapy[J]. Nano Lett,2015,15(11):7488-7496.
    [31] Gao W,Li S,Liu Z,et al. Targeting and destroying tumor vascula-ture with a near-infrared laser-activated"nanobomb"for efficienttumor ablation[J]. Biomaterials,2017,139:1-11.
    [32] Zhang C,Ni D,Liu Y,et al. Magnesium silicide nanoparticles asa deoxygenation agent for cancer starvation therapy[J]. NatNanotechnol,2017,12(4):378-386.
    [33] Malamas AS,Jin E,Gujrati M,et al. DCE-MRI assessing the anti-angiogenic effect of silencing HIF-1αwith targeted multifunctionalECO/siRNA nanoparticles[J]. Mol Pharm,2016,13(7):2497-2506.
    [34] Miao L,Liu Q,Lin CM,et al. Targeting tumor-associated fibro-blasts for therapeutic delivery in desmoplastic tumors[J]. CancerRes,2017,77(3):719-731.
    [35] Ruan S,He Q,Gao H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor micro-environment sensitive penetration and diagnosis of glioma[J].Nanoscale,2015,7(21):9487-9496.
    [36] Huo M,Zhao Y,Satterlee AB,et al. Tumor-targeted delivery ofsunitinib base enhances vaccine therapy for advanced melanomaby remodeling the tumor microenvironment[J]. J ControlRelease,2017,245:81-94.
    [37] Yan L,Gao Y,Pierce R,et al. Development of Y-shaped peptidefor constructing nanoparticle systems targeting tumor-associatedmacrophages in vitro and in vivo[J]. Mater Res Express,2014,1(2):025007.
    [38] Finlay J,Roberts CM,Dong J,et al. Mesoporous silica nanoparti-cle delivery of chemically modified siRNA against TWIST1 leadsto reduced tumor burden[J]. Nanomedicine,2015,11(7):1657-1666.
    [39] Wang B,Ding Y,Zhao X,et al. Delivery of small interfering RNAagainst Nogo-B receptor via tumor-acidity responsive nanoparti-cles for tumor vessel normalization and metastasis suppression[J]. Biomaterials,2018,175:110-122.
    [40] Kwak G,Jo SD,Kim D,et al. Synergistic antitumor effects ofcombination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles[J]. J Control Release,2017,267:203-213.
    [41] Wong PP,Bodrug N,Hodivala-Dilke KM. Exploring novel meth-ods for modulating tumor blood vessels in cancer treatment[J].Curr Biol,2016,26(21):R1161-R1166.
    [42] Ebos JM,Lee CR,Kerbel RS. Tumor and host-mediated pathwaysof resistance and disease progression in response to antiangiogenictherapy[J]. Clin Cancer Res,2009,15(16):5020-5025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700