快速城市化地区住宅用地表层土壤有机碳的变异性及其影响因素——以福州南台岛为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variability of soil organic carbon and factors affecting it in residential lands in a rapidly urbanizing area:a case study of Nantai Island of Fuzhou City,China
  • 作者:曾宏达 ; 徐涵秋 ; 刘智才 ; 黄向华 ; 肖苏麟
  • 英文作者:ZENG Hongda;XU Hanqiu;LIU Zhicai;HUANG Xianghua;XIAO Sulin;College of Environment and Resources,Fuzhou University,Institute of Remote Sensing Information Engineering,Fuzhou University;State Key Laboratory of Humid Subtropical Mountain Ecology,College of Geographical Sciences,Fujian Normal University;
  • 关键词:快速城市化 ; 住宅用地 ; 土壤有机碳密度 ; 福州
  • 英文关键词:rapid urbanization;;residential land;;soil organic carbon density;;Fuzhou City
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福州大学环境与资源学院福州大学遥感信息工程研究所;福建师范大学地理科学学院湿润亚热带山地生态国家重点实验室培育基地;
  • 出版日期:2017-11-02 09:05
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(31200366,31400609)
  • 语种:中文;
  • 页:STXB201804029
  • 页数:9
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:264-272
摘要
在高分辨率影像提取福州市南台岛(仓山区)住宅用地的基础上,从覆盖研究区的30m×30m网格中随机选择50个样方进行表层土壤取样,进而分析这一快速城市化地区住宅用地表层土壤有机碳密度(Soil organic carbon density,SOCD)的变异特征及其影响因素。结果表明:城市地区住宅用地在剧烈的人类活动干扰下,土壤呈现明显的空间变异特征,其SOCD平均值为33.814t/hm~2,变异系数达72.8%,其中郊区村镇住宅用地0—20cm土层的SOCD高于城市居住用地72%,预示着村镇就地城市化后将造成土壤碳储量的下降;然而,表层土壤有机碳含量与密度在建成时间为0—5年和5—10年的城市住宅小区间无显著差异,只有住宅建成时间达到10—15年才有显著提高。基于湿度、热度、绿化率与物业管理费等因子构建的城市住宅区绿化环境管理质量指标,与城市居住区表层土壤有机碳含量及密度存在显著正相关,与土壤容重呈显著负相关,成为快速城市化地区影响SOCD变异的另一主要因素。
        Humanity today is experiencing a dramatic shift to urban living. Land coverage changes to build cities and to support the demands of urban populations themselves drive other types of environmental change. Urban development is associated with physical changes to the landscape,such as increased impervious surface area and the replacement of natural vegetation with lawns,which can positively or negatively alter soil organic carbon( SOC) stocks. However,little is known about the characteristics and potential drivers of SOC variability in urban areas. Urban plus rural residential lands are one of the largest land use zones in a city and its suburban area. Therefore,one would expect changes in SOC stocks with the residential land use changes such as urbanization. In this study,residential land information was extracted from high resolution imagery of Nantai Island in the Cangshan District,Fuzhou City,then 50 soil sampling plots were randomly selected from residential sites based on a 30 m × 30 m sampling grid covering the island. Variability of soil organic carbondensity( SOCD) in residential sites and its affecting factors were analyzed in this rapidly urbanizing area. The results indicated that because of an intense interference by human activities,soil in urban residential areas has a strong spatial heterogeneity. Average SOCD was 33.814 t/hm~2,with a variation coefficient of 72.8%. The SOCD in the surface layer( 0—20 cm) of the rural residential area was 72% higher than that of urban residential land,which indicated that SOC stocks declined with the situ urbanization in the rural area. However,both SOC content and density in the 10—15 year group of housing developments were significantly higher than those in the group with housing developments less than 10 years old,although there was no significant difference between the 0—5 and 5—10 year housing developments. The recovery of urban residential SOC stock,compared to rural residential,requires longer accumulation time. A composite index developed in this study for urban residential green space management quality,which combined humidity,heat,green coverage ratio,and property management fees by a principal component analysis,showed a significant linear positive correlation with SOC content and density,and negative correlation with bulk density. Therefore,residential green space management was another factor affecting SOCD variation in a rapidly urbanizing area. Although the conversion of rural residential into urban residential land will lead to SOCD declines because of the reduction of exogenous organic material input,the living environment has been improved,and the management of green space also contributes to the improvement of urban soil quality.
引文
[1]Schneider A,Friedl M A,Potere D.Mapping global urban areas using MODIS 500-m data:new methods and datasets based on‘urban ecoregions’.Remote Sensing of Environment,2010,114(8):1733-1746.
    [2]Angel S,Parent J,Civco D L,Blei A,Potere D.The dimensions of global urban expansion:Estimates and projections for all countries,2000-2050.Progress in Planning,2011,75(2):53-107.
    [3]Seto K C,Güneralp B,Hutyra L R.Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools.Proceedings of the National Academy of Sciences of the United States of America,2012,109(40):16083-16088.
    [4]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应.生态学报,2003,23(3):539-546.
    [5]Pickett S T A,Cadenasso M L,Grove M J,Boone C G,Groffman P M,Irwin E,Kaushal S S,Marshall V,Mc Grath B P,Nilon C H,Pouyat R V,Szlavecz K,Troy A,Warren P.Urban ecological systems:Scientific foundations and a decade of progress.Journal of Environmental Management,2011,92(11):331-362.
    [6]Pouyat R V,Groffman P,Yesilonis I,Hernandez L.Soil carbon pools and fluxes in urban ecosystems.Environmental Pollution,2002,116(S1):S107-S118.
    [7]Pouyat R V,Yesilonis I D,Nowak D J.Carbon storage by urban soils in the United States.Journal of Environmental Quality,2006,35(4):1566-1575.
    [8]Pouyat R V,Yesilonis I D,Golubiewski N E.A comparison of soil organic carbon stocks between residential turf grass and native soil.Urban Ecosystems,2009,12(1):45-62.
    [9]罗上华,毛齐正,马克明,邬建国.北京城市绿地表层土壤碳氮分布特征.生态学报,2014,34(20):6011-6019.
    [10]张廷龙,孙睿,胡波,党一诺,孙亮.北京西北部典型城市化地区不同土地利用类型土壤碳特征分析.北京师范大学学报:自然科学版,2010,46(1):97-102.
    [11]章明奎,周翠.杭州市城市土壤有机碳的积累和特性.土壤通报,2006,37(1):19-21.
    [12]何跃,张甘霖.城市土壤有机碳和黑碳的含量特征与来源分析.土壤学报,2006,43(2):177-182.
    [13]许乃政,张桃林,王兴祥,刘红樱.城市化进程中的土壤有机碳库演变趋势分析.土壤通报,2011,42(3):659-663.
    [14]周睿,潘贤章,解宪丽,王宝良,王昌昆,刘娅,李燕丽.城市化进程对土壤表层有机碳库的影响——以上海市为例.土壤通报,2013,44(5):1163-1167.
    [15]Liu Y,Wang C,Yue W Z,Hu Y Y.Storage and density of soil organic carbon in urban topsoil of hilly cities:a case study of Chongqing municipality of China.Chinese Geographical Science,2013,23(1):26-34.
    [16]Raciti S M,Groffman P M,Jenkins J C,Pouyat R V,Fahey T J,Pickett S T A,Cadenasso M L.Accumulation of carbon and nitrogen in residential soils with different land-use histories.Ecosystems,2011,14(2):287-297.
    [17]Lorenz K,Lal R.Biogeochemical C and N cycles in urban soils.Environment International,2009,35(1):1-8.
    [18]Brown S,Miltner E,Cogger C.Carbon sequestration potential in urban soils//Lal R,Augustin B,eds.Carbon Sequestration in Urban Ecosystems.Netherlands:Springer,2012:173-196.
    [19]国土资源部.GB/T 21010—2007土地利用现状分类.北京:中国标准出版社,2007:2-5.
    [20]中华人民共和国住房和城乡建设部.GB 50137-2011城市用地分类与规划建设用地标准.北京:中国计划出版社,2012:1-5.
    [21]王巧环,任玉芬,孟龄,李虹,傅慧敏,王华锋.元素分析仪同时测定土壤中全氮和有机碳.分析试验室,2013,32(10):41-45.
    [22]徐涵秋.新型Landsat 8卫星影像的反射率和地表温度反演.地球物理学报,2015,58(3):741-747.
    [23]冯义龙,马跃,先旭东.重庆主城核心区地表温度与绿地乔木基干横断面积和相关性研究.西南师范大学学报:自然科学版,2009,34(5):177-179.
    [24]高美蓉,贾宝全,王成,孙朝晖.厦门本岛城市森林树冠覆盖与热岛效应关系.林业科学,2014,50(3):63-68.
    [25]Baig M H A,Zhang L F,Shuai T,Tong Q X.Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance.Remote Sensing Letters,2014,5(5):423-431.
    [26]Crist E P.A TM Tasseled Cap equivalent transformation for reflectance factor data.Remote Sensing of Environment,1985,17(3):301-306.
    [27]刘娟,蔡演军,王瑾.青海湖流域土壤遥感分类.国土资源遥感,2014,26(1):57-62.
    [28]Luo S H,Mao Q Z,Ma K M.Comparison on soil carbon stocks between urban and suburban topsoil in Beijing,China.Chinese Geographical Science,2014,24(5):551-561.
    [29]徐涵秋.城市不透水面与相关城市生态要素关系的定量分析.生态学报,2009,29(5):2456-2462.
    [30]Golubiewski N E.Urbanization increases grassland carbon pools:effects of landscaping in Colorado's front range.Ecological Applications,2006,16(2):555-571.
    [31]Raciti S M,Hutyra L R,Finzi A C.Depleted soil carbon and nitrogen pools beneath impervious surfaces.Environmental Pollution,2012,164:248-251.
    [32]Vasenev V I,Stoorvogel J J,Vasenev I I,Valentini R.How to map soil organic carbon stocks in highly urbanized regions.Geoderma,2014,226-227:103-115.
    [33]Aparin B F,Sukhacheva E Y.Principles of soil mapping of a megalopolis with St.Petersburg as an example.Eurasian Soil Science,2014,47(7):650-661.
    [34]Liu X L,Li T,Zhang S R,Jia Y X,Li Y,Xu X X.The role of land use,construction and road on terrestrial carbon stocks in a newly urbanized area of western Chengdu,China.Landscape and Urban Planning,2016,147:88-95.
    [35]孙艳丽,马建华,李灿.开封市不同功能区城市土壤有机碳含量与密度分析.地理科学,2009,29(1):124-128.
    [36]Olsson L,Ard9 J.Soil carbon sequestration in degraded semiarid agro-ecosystems-perils and potentials.AMBIO:A Journal of the Human Environment,2002,31(6):471-477.
    [37]刘兆云,章明奎.城市绿地年龄对土壤有机碳积累的影响.生态学杂志,2010,29(1):142-145.
    [38]Huyler A,Chappelka A H,Prior S A,Somers C L.Influence of aboveground tree biomass,home age,and yard maintenance on soil carbon levels in residential yards.Urban Ecosystems,2014,17(3):787-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700