Cu/SiO_2逐层沉积增强无杂质空位诱导InGaAsP/InGaAsP量子阱混杂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:InGaAsP/InGaAsP Quantum Well Intermixing Induced by Impurity Free Vacancy Enhanced Through Cu/SiO_2 Deposition
  • 作者:郭春扬 ; 张瑞英 ; 刘纪湾 ; 王林军
  • 英文作者:Guo Chunyang;Zhang Ruiying;Liu Jiwan;Wang Linjun;School of Materials Science and Engineering, Shanghai University;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences;
  • 关键词:InGaAsP ; 多量子阱(MQW) ; 量子阱混杂(QWI) ; Cu/SiO_2 ; 快速热退火 ; 蓝移
  • 英文关键词:InGaAsP;;multiple quantum well(MQW);;quantum well intermixing(QWI);;Cu/SiO_2;;rapid thermal annealing;;blue shift
  • 中文刊名:BDTJ
  • 英文刊名:Semiconductor Technology
  • 机构:上海大学材料科学与工程学院;中国科学院苏州纳米技术与纳米仿生研究所;
  • 出版日期:2019-03-03
  • 出版单位:半导体技术
  • 年:2019
  • 期:v.44;No.367
  • 基金:国家自然科学基金资助项目(51202284);; 江苏省重点研发计划(产业前瞻与共性关键技术)资助项目(BE2016083)
  • 语种:中文;
  • 页:BDTJ201903005
  • 页数:5
  • CN:03
  • ISSN:13-1109/TN
  • 分类号:36-40
摘要
研究了Cu/SiO_2逐层沉积增强的无杂质空位诱导InGaAsP/InGaAsP多量子阱混杂(QWI)行为。在多量子阱(MQW)外延片表面,采用等离子体增强的化学气相沉积(PECVD)不同厚度的SiO_2,然后溅射5 nm Cu,在不同温度下进行快速热退火(RTA)诱发量子阱混杂。通过光荧光(PL)谱表征样品在QWI前后的变化。实验结果表明,当RTA温度小于700℃时,PL谱峰值波长只有微移,且变化与其他参数关系不大;当RTA温度大于700℃时,PL谱峰值波长移动与介质层厚度和RTA时间都密切相关,当SiO_2厚度为200 nm,退火温度为750℃,时间为200 s时,可获得54.3 nm的最大波长蓝移。该种QWI方法能够诱导InGaAsP MQW带隙移动,QWI效果与InGaAsP MQW中原子互扩散激活能、互扩散原子密度以及在RTA过程中热应力有关。
        InGaAsP/InGaAsP multiple quantum well intermixing(QWI) behavior induced by impurity free vacancy enhanced through Cu/SiO_2 deposition was investigated. On the surface of the multiple quantum well(MQW) epitaxial wafer, different thickness of SiO_2 were grown by plasma-enhanced che-mical vapor deposition(PECVD), then 5 nm of Cu was sputtered, after rapid thermal annealing(RTA) at different temperatures, QWI was induced. Changes of the samples before and after QWI process were characterized by photoluminescence(PL) spectra. The experimental results show that the peak wavelength of the PL spectrum shifts slightly when the RTA temperature is less than 700 ℃, and the change has little relationship with other parameters. When the RTA temperature is greater than 700 ℃, the peak wavelength shift of the PL spectrum is closely related to the thickness of dielectric layer and RTA time. When the SiO_2 thickness is 200 nm, and the wafer is annealing at 750 ℃ for 200 s, the maximum wavelength blue shift is 54.3 nm. The QWI method can induce the band gap shift of InGaAsP MQW. The QWI effect is related to atomic interdiffusion activation energy, interdiffusion atom density and thermal stress in the RTA process.
引文
[1] ZHU Y Y, ZHU L. Integrated single frequency, high power laser sources based on monolithic and hybrid cohe-rent beam combining[J].IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-8.
    [2] YU J S, LEE Y T. Impurity-free vacancy diffusion of InGaAsP/InGaAsP multiple quantum well structures using SiH4-dependent dielectric cappings [J]. Japanese Journal of Applied Physics, 2007, 46(10A):6509-6513.
    [3] KWON Y H, CHOE J S, SIM J S, et al. 40 Gb/s traveling-wave electroabsorption modulator-integrated DFB lasers fabricated using selective area growth [J]. ETRI Journal, 2009, 31(6): 765-769.
    [4] KOBAYASHI W, ARAI M, YAMANAKA T, et al. Design and fabrication of 10-/40- Gb/s, uncooled electroabsorption modulator integrated DFB laser with Butt-joint structure [J]. Journal of Lightwave Technology, 2010, 28(1):164-171.
    [5] DJIE H S, MEI T. Plasma-induced quantum well intermixing for monolithic photonic integration [J].IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2):373-382.
    [6] CHANG H J, LIN E Y, CHUANG K Y, et al. Quantum well intermixing in InGaAs/InGaAlAs structures by using ICP-RIE and SiO2 sputtering [C]//Proceedings of the 19th International conference on Indium Phosphide & Related Materials. Matsue, Japan, 2007:215-217.
    [7] LEE K H, O'CALLAGHAN J R, ROYCROFT B, et al. Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method [J].Proceedings of SPIE, 2010, 7604:76040J-1-76040J-7.
    [8] ARSLAN S, DEMIR A, SAHIN S, et al. Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers [J]. Semiconductor Science and Technology, 2018, 33(2): 025001-1-025001-7.
    [9] MARSH J H, HAMILTON C J, McDOUGALL S D, et al. Method of manufacturing optical devices and related improvements:US 6632684[P].2003-10-14.
    [10] HAMILTON C J, KOWALSKI O P, MARSH J H, et al. Method of manufacturing optical devices and related improvements:US 6989286[P].2006-01-24.
    [11] CUI X, ZHANG C, LIANG S, et al. Enhanced impurity-free intermixing bandgap engineering for InP-based photonic integrated circuits [J]. Chinese Physics Letters, 2014, 31(4): 044204-1-044204-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700