惯性微流体的应用与发展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and development of inertial microfluids
  • 作者:高贤 ; 于成壮 ; 魏春阳 ; 谷美林 ; 李姗姗
  • 英文作者:GAO Xian;YU Cheng-zhuang;WEI Chun-yang;GU Mei-lin;LI Shan-shan;School of Mechanical Engineering,Hebei University of Technology;Key Laboratory of Hebei Province of Robot Sensing and Human Machine Fusion;
  • 关键词:微流体 ; 颗粒操控 ; 惯性效应 ; 侧向迁移 ; 聚焦
  • 英文关键词:microfluidic;;particle manipulation;;inertial effect;;lateral migration;;focusing
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:河北工业大学机械工程学院;河北省机器人传感及人机融合重点实验室;
  • 出版日期:2019-03-06
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.325
  • 基金:国家自然科学基金资助项目(51505123,51728502);; 河北省自然科学基金资助项目(E2015202194);; 中国博士后科学基金资助项目(2015M580190,2017T100149);; 河北省高等学校青年拔尖人才计划资助项目(BJ2014014)
  • 语种:中文;
  • 页:CGQJ201903001
  • 页数:7
  • CN:03
  • ISSN:23-1537/TN
  • 分类号:7-12+16
摘要
近年来惯性微流体已经成为操纵颗粒和细胞的重要工具,在医学诊断,材料合成以及生化反应领域有着重要应用。微流体的惯性效应能够实现颗粒高通量下的精确操控。惯性升力会驱动颗粒在微通道内发生侧向迁移,通过改变微通道尺寸,入口流速等条件来调控颗粒的运动,实现不同尺寸颗粒的聚焦。非直微通道中迪恩曳力和离心力在颗粒的迁移过程中也起到了重要作用,这两种力的加入有助于提高聚焦效率。综述了多种类型的直通道和弯曲通道中颗粒惯性迁移的最新研究进展,详细阐述了各类型通道中颗粒迁移的原理及应用实例,总结发展现状并对惯性微流体在未来发展中需要解决的问题进行讨论。
        In recent years,inertial microfluidics has become an important tool for manipulating particles and cells,and has important applications in medical diagnosis,material synthesis and biochemical reactions. The inertial effect of microfluidics enables precise manipulation of particles at high throughputs. Inertial lift forces the particles to migrate laterally within the microchannels and regulates particle motion by changing microchannel dimensions,inlet flow velocity,and other conditions to achieve focusing of particles of different sizes. Dean's drag and centrifugal forces in non-straight microchannels also play an important role in particle migration,and the addition of these two forces helps to improve focusing efficiency. The latest research progress of various types of inertial migration of particles in straight passage and curved passage are reviewed. The principle and application of particle migration in various types of passage are expounded in detail. The development status and problem to be solved in development of inertial microfluidics in the future are discussed.
引文
[1] Zhang J,Yuan D,Zhao Q,et al. Tunable particle separation in ahybrid dielectrophoresis(DEP)-inertial microfluidic device[J].Sensors and Actuators B:Chemical,2018,267:14-25.
    [2] Zhou Y,Song L,Yu L,et al. Inertially focused diamagneticparticle separation in ferrofluids[J]. Microfluidics and Nano-fluidics,2017,21(1):14.
    [3] Kennedy T,Pluskal M,Gilmanshin R,et al. Acoustophoresismediated chromatography processing:Capture of proteins fromcell cultures[J]. The Journal of the Acoustical Society of Ameri-ca,2017,141(5):3505-3505.
    [4] Yang S,Kim J Y,Lee S J,et al. Sheathless elasto-inertial particlefocusing and continuous separation in a straight rectangular mi-crochannel[J]. Lab on a Chip,2011,11(2):266-273.
    [5] Di Carlo D. Inertial microfluidics[J]. Lab on a Chip,2009,9(21):3038-3046.
    [6] Xiang N,Chen K,Sun D,et al. Quantitative characterization ofthe focusing process and dynamic behavior of differently sizedmicroparticles in a spiral microchannel[J]. Microfluidics andNanofluidics,2013,14(1-2):89-99.
    [7] Ozkumur E,Shah A M,Ciciliano J C,et al. Inertial focusing fortumor antigen-dependent and-independent sorting of rare circula-ting tumor cells[J]. Science Translational Medicine,2013,5(179):179ra147-179ra147.
    [8] Shen S,Ma C,Zhao L,et al. High-throughput rare cell separationfrom blood samples using steric hindrance and inertial micro-fluidics[J]. Lab on a Chip,2014,14(14):2525-2538.
    [9] Syed M S,Rafeie M,Vandamme D,et al. Selective separation ofmicroalgae cells using inertial microfluidics[J]. BioresourceTechnology,2018,252:91-99.
    [10] Karimi A,Yazdi S,Ardekani A. Hydrodynamic mechanisms ofcell and particle trapping in microfluidics[J]. Biomicrofluidics,2013,7(2):021501.
    [11] PaièP,Bragheri F,Di Carlo D,et al. Particle focusing by 3 Dinertial microfluidics[J]. Microsystems&Nanoengineering,2017,3:17027.
    [12] Dijkshoorn J,Schutyser M,Wagterveld R,et al. A comparison ofmicrofiltration and inertia-based microfluidics for large scalesuspension separation[J]. Separation and Purification Technolo-gy,2017,173:86-92.
    [13] Nam J,Lim H,Kim D,et al. Continuous separation of micro-particles in a microfluidic channel via the elasto-inertial effect ofnon-Newtonian fluid[J]. Lab on a Chip,2012,12(7):1347-1354.
    [14] Segre G. Radial particle displacements in Poiseuille flow ofsuspensions[J]. Nature,1961,189:209-210.
    [15] Ho B,Leal L. Migration of rigid spheres in a two-dimensional uni-directional shear flow of a second-order fluid[J]. Journal of FluidMechanics,1976,76(4):783-799.
    [16] Asmolov E S. The inertial lift on a spherical particle in a planepoiseuille flow at large channel Reynolds number[J]. Journal ofFluid Mechanics,1999,381:63-87.
    [17] Matas J P,Morris J F,Guazzelli E Inertial migration of rigidspherical particles in Poiseuille flow[J]. Journal of FluidMechanics,2004,515:171-195.
    [18] Liu C,Hu G,Jiang X,et al. Inertial focusing of spherical particlesin rectangular microchannels over a wide range of Reynoldsnumbers[J]. Lab on a Chip,2015,15(4):1168-1177.
    [19] Lim E J,Ober T J,Edd J F,et al. Visualization of microscaleparticle focusing in diluted and whole blood using particle trajec-tory analysis[J]. Lab on a Chip,2012,12(12):2199-2210.
    [20] Nieuwstadt H A,Seda R,Li D S,et al. Microfluidic particlesorting utilizing inertial lift force[J]. Biomedical Microdevices,2011,13(1):97-105.
    [21] Mach A J,Di Carlo D. Continuous scalable blood filtration deviceusing inertial microfluidics[J]. Biotechnology and Bioenginee-ring,2010,107(2):302-311.
    [22] Dudani J S,Go D E,Gossett D R,et al. Mediating millisecondreaction time around particles and cells[J]. Analytical Chemis-try,2014,86(3):1502-1510.
    [23] Tan A P,Dudani J S,Arshi A,et al. Continuous-flow cytomorpho-logical staining and analysis[J]. Lab on a Chip,2014,14(3):522-531.
    [24] Hur S C,Brinckerhoff T Z,Walthers C M,et al. Label-freeenrichment of adrenal cortical progenitor cells using inertialmicrofluidics[J]. Plo S One,2012,7(10):e46550.
    [25] Hur S C,Tse H T K,Di Carlo D. Sheathless inertial cell orderingfor extreme throughput flow cytometry[J]. Lab on a Chip,2010,10(3):274-280.
    [26] Clime L,Li K,Geissler M,et al. Separation and concentration ofPhytophthora ramorum sporangia by inertial focusing in curvingmicrofluidic flows[J]. Microfluidics and Nanofluidics,2017,21(1):5.
    [27] Phadke M,Shaner S,Shah S,et al. Inertial focusing and passivemicro-mixing techniques for rare cells capturing microfluidic plat-form[C]∥2018 Proceedings of the AIP Conference. AIP Publi-shing,2018.
    [28] Nivedita N,Ligrani P,Papautsky I. Dean flow dynamics in low-aspect ratio spiral microchannels[J]. Scientific Reports,2017,7:44072.
    [29] Ryu H,Choi K,Qu Y,et al. Label-free neutrophil enrichmentfrom patient-derived airway secretion using closed-loop inertialmicrofluidics[J]. Journal of Visualized Experiments,2018,136:e57673-e57673.
    [30] Al-Halhouli A A,Al-Faqheri W,Alhamarneh B,et al. Spiralmicrochannels with trapezoidal cross section fabricated by femto-second laser ablation in glass for the inertial separation of micro-particles[J]. Micromachines,2018,9(4):171.
    [31] Li M,Munoz H E,Goda K,et al. Shape-based separation ofmicroalga Euglena gracilis using inertial microfluidics[J]. Scien-tific Reports,2017,7(1):10802.
    [32] Kim J A,Lee J R,Je T J,et al. Size-dependent inertial focusingposition shift and particle separations in triangular micro-channels[J]. Analytical Chemistry,2018,90(3):1827-1835.
    [33] Zhang J,Yuan D,Sluyter R,et al. High-throughput separation ofwhite blood cells from whole blood using inertial micro-fluidics[J]. IEEE Transactions on Biomedical Circuits and Sys-tems,2017,11(6):1422-1430.
    [34] Lee M G,Choi S,Park J K. Rapid laminating mixer using acontraction-expansion array microchannel[J]. Applied PhysicsLetters,2009,95(5):051902.
    [35] Lee M G,Choi S,Park J K. Three-dimensional hydrodynamicfocusing with a single sheath flow in a single-layer microfluidicdevice[J]. Lab on a Chip,2009,9(21):3155-3160.
    [36] Bhagat A A S,Hou H W,Li L D,et al. Pinched flow coupledshear-modulated inertial microfluidics for high-throughput rareblood cell separation[J]. Lab on a Chip,2011,11(11):1870-1878.
    [37] Park J S,Song S H,Jung H I. Continuous focusing of micro-particles using inertial lift force and vorticity via multi-orificemicrofluidic channels[J]. Lab on a Chip,2009,9(7):939-948.
    [38] Ramachandraiah H,Ardabili S,Faridi A M,et al. Dean flow-coupled inertial focusing in curved channels[J]. Biomicroflui-dics,2014,8(3):034117.
    [39] Yoon D H,Ha J B,Bahk Y K,et al. Size-selective separation ofmicro beads by utilizing secondary flow in a curved rectangularmicrochannel[J]. Lab on a Chip,2009,9(1):87-90.
    [40] Bhagat A A S,Kuntaegowdanahalli S S,Kaval N,et al. Inertialmicrofluidics for sheath-less high-throughput flow cytometry[J].Biomedical Microdevices,2010,12(2):187-195.
    [41] Kuntaegowdanahalli S S,Bhagat A A S,Kumar G,et al. Inertialmicrofluidics for continuous particle separation in spiral micro-channels[J]. Lab on a Chip,2009,9(20):2973-2980.
    [42] Sheng W,Chen T,Kamath R,et al. Aptamer-enabled efficient iso-lation of cancer cells from whole blood using a microfluidicdevice[J]. Analytical Chemistry,2012,84(9):4199-4206.
    [43] Sun J,Liu C,Li M,et al. Size-based hydrodynamic rare tumor cellseparation in curved microfluidic channels[J]. Biomicrofluidics,2013,7(1):011802.
    [44] Sun J,Li M,Liu C,et al. Double spiral microchannel for label-free tumor cell separation and enrichment[J]. Lab on a Chip,2012,12(20):3952-3960.
    [45] Shen S,Tian C,Li T,et al. Spiral microchannel with orderedmicro-obstacles for continuous and highly-efficient particle sepa-ration[J]. Lab on a Chip,2017,17(21):3578-3591.
    [46] Kemna E W,Schoeman R M,Wolbers F,et al. High-yield cellordering and deterministic cell-in-droplet encapsulation usingDean flow in a curved microchannel[J]. Lab on a Chip,2012,12(16):2881-2887.
    [47] Zhang J,Yan S,Sluyter R,et al. Inertial particle separation bydifferential equilibrium positions in a symmetrical serpentinemicro-channel[J]. Scientific Reports,2014,4:4527.
    [48] Liu C,Xue C,Sun J,et al. A generalized formula for inertial lifton a sphere in microchannels[J]. Lab on a Chip,2016,16(5):884-892.
    [49] Zhang J,Li W,Li M,et al. Particle inertial focusing and itsmechanism in a serpentine microchannel[J]. Microfluidics andNanofluidics,2014,17(2):305-316.
    [50] Cairone F,Sanalitro D,Bucolo M,et al. DPIV analysis of RBCsflows in serpentine micro-channel[C]∥Proceedings of 2017IEEE European Conference on Circuit Theory and Design(ECCTD),2017.
    [51] Li M,Van Zee M,Goda K,et al. Size-based sorting of hydrogeldroplets using inertial microfluidics[J]. Lab on a Chip,2018,18(17):2575-2582.
    [52] Di Carlo D,Irimia D,Tompkins R G,et al. Continuous inertialfocusing,ordering, and separation of particles in micro-channels[C]∥Proceedings of the National Academy of Sciences,2007:18892-18897.
    [53] Ducloue L,Casanellas L,Haward S J,et al. Secondary flows ofviscoelastic fluids in serpentine microchannels[J]. ar Xiv preprintar Xiv:1810. 12199,2018.
    [54] Di Carlo D,Edd J F,Irimia D,et al. Equilibrium separation andfiltration of particles using differential inertial focusing[J].Analytical Chemistry,2008,80(6):2204-2211.
    [55] Oakey J,Applegate Jr R W,Arellano E,et al. Particle focusing instaged inertial microfluidic devices for flow cytometry[J]. Analy-tical Chemistry,2010,82(9):3862-3867.
    [56] Lee M G,Choi S,Park J K. Inertial separation in a contraction-expansion array microchannel[J]. Journal of ChromatographyA,2011,1218(27):4138-4143.
    [57] Lee M G,Choi S,Kim H J,et al. Inertial blood plasma separationin a contraction-expansion array microchannel[J]. AppliedPhysics Letters,2011,98(25):253702.
    [58] Lee M G,Shin J H,Bae C Y,et al. Label-free cancer cell separa-tion from human whole blood using inertial microfluidics at lowshear stress[J]. Analytical Chemistry,2013,85(13):6213-6218.
    [59] Hyun K A,Kwon K,Han H,et al. Microfluidic flow fractionationdevice for label-free isolation of circulating tumor cells(CTCs)from breast cancer patients[J]. Biosensors and Bioelectronics,2013,40(1):206-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700