数值模拟中混凝土类材料应变率效应曲线的惯性效应修正
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MODIFICATION OF DIF-STRAIN RATE CURVE OF CONCRETE-LIKE MATERIALS IN NUMERICAL SIMULATION OF SHPB EXPERIMENTS
  • 作者:李潇 ; 方秦 ; 孔祥振 ; 吴昊
  • 英文作者:LI Xiao;FANG Qin;KONG Xiang-zhen;WU Hao;State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University;
  • 关键词:混凝土类材料 ; 应变率效应 ; 惯性效应 ; 数值模拟 ; SHPB实验
  • 英文关键词:concrete-like materials;;strain rate effect;;inertial effect;;numerical simulation;;SHPB experiments
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:陆军工程大学爆炸冲击防灾减灾国家重点实验室;
  • 出版日期:2018-12-20
  • 出版单位:工程力学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金项目(51321064,51427807,51210012);; 国家重点研发计划项目(2016YFC0305200)
  • 语种:中文;
  • 页:GCLX201812009
  • 页数:8
  • CN:12
  • ISSN:11-2595/O3
  • 分类号:56-63
摘要
数值模拟是研究混凝土类材料在动载下响应的有效方法,准确输入材料真实的应变率效应曲线对预测结构在动载下的响应有重要作用。收集了1990年以来针对混凝土类材料的动态抗压实验数据,并将惯性效应对材料动态强度的影响进行剥离,得到真实的材料应变率效应引起的抗压动态强度放大因子(DIF?(5))与应变率对数的关系曲线。分析数据发现:实验得到的抗压动态强度放大因子(DIFs)和惯性效应引起的抗压动态强度放大因子(DIFi)都随试件尺寸的增大而增大;随着材料准静态强度增大,混凝土类材料DIFi随应变率增长的增长幅度减小。对比拟合曲线与其他曲线可知,在高应变率下,新的应变率效应拟合曲线比已有半经验公式能更好地反映实验数据的DIF?(5);模拟时分别输入新的应变率效应曲线和CEB推荐公式,将输出结果与DIFs对比,验证了新的应变率效应曲线的优越性。
        Numerical simulation is an effective technique to study the response of concrete-like materials to dynamic loads. For predicting the concrete-like materials structure response to dynamic loads, it's important to input the DIF-strain rate curve exactly in numerical simulation. The data in dynamic compressive experiments of concrete-like materials since 1990 was collected, and the inertia-induced effect on dynamic strength of material was stripped out to obtain DIF?(5)-log ?(5) curve. It is discovered that DIFs and DIFi increase with specimen size. At the same time, DIFi of concrete-like materials increase less with the strain rate when the quasi-static strength of the materials increases. New curve and semi-empirical formula curve were compared, which show that the new curve was coincided with DIF?(5) of experiments better than the semi-empirical formula at high strain rate. Furthermore, the superiorities of new curve are validated by comparing the DIF recommended by CEB with the new curve as the numerical inputs.
引文
[1]Bresler B,Bertero V V.Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression[C]//the 2nd Canadian Conference on Earthquake Engineering.Hamilton,Ont.McMaster University Bookstore,1975:1―13.
    [2]Takeda J,Tachikawa H.The mechanical properties of several kinds of concrete at compressive,tensile,and flexural tests in high rates of loading[J].Transactions of the Architectural Institute of Japan,1962,77:1―6.
    [3]Hughes B P,Gregory R.Concrete subjected to high rates of loading in compression[J].Magazine of Concrete Research,1972,24(78):25―36.
    [4]Watstein D.Effect of straining rate on the compressive strength and elastic properties of concrete[J].ACIJournal Proceedings,1953,49(4):729―744.
    [5]Hughes B P,Watson A J.Compressive strength and ultimate strain of concrete under impact loading[J].Magazine of Concrete Research,1978,30(105):189―199.
    [6]Ross C A,Tedesco J W.Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[J].Materials Journal,1989,86(5):475―481.
    [7]Ross C A,Tedesco J W,Kuennen S T.Effects of strain rate on concrete strength[J].Materials Journal,1995,92(1):37―47.
    [8]Ross C A,Jerome D M,Tedesco J W,et al.Moisture and strain rate effects on concrete strength[J].Materials Journal,1996,93(3):293―300.
    [9]Malvern L E,Jenkins D A,Tang T,et al.Dynamic compressive testing of concrete[C]//Proceedings of 2nd symposium on the Interaction of Non-nuclear Munitions with Structures.Florida,USA.1985:194―199.
    [10]Grote D L,Park S W,Zhou M.Dynamic behavior of concrete at high strain rates and pressures:I.experimental characterization[J].International Journal of Impact Engineering,2001,25(9):869―886.
    [11]Bischoff P H,Perry S H.Compressive behavior of concrete at high-strain rates[J].Material Structure,1991;24(6):425―450.
    [12]CEB-FIP Model Code 1990,Bulletin D’Information No.213/214[S].Lausanne,Switzerland:Committee International du Beton,1993.
    [13]Hao H,Hao Y,Li Z X.Numerical quantification of factors influencing high-speed impact tests of concrete material[J].Advances in Protective Structures Research,2012,1:97―130.
    [14]Xu H,Wen H M.Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J].International Journal of Impact Engineering,2013,60:76―81.
    [15]辛雁清.混凝土圆柱体试件和立方体试件抗压强度关系的分析[J].中国水能及电气化,2015(7):59―62.Xin Yanqing.Analysis of compressive strength relationship between concrete cylinder specimen and cube specimen[J].China Mater&Electrification,2015(7):59―62.(in Chinese)
    [16]Tedesco J W,Powell J C,Ross C A,et al.A strain-ratedependent concrete material model for ADINA[J].Computers&Structures,1997,64(5/6):1053―1067.
    [17]Tedesco J W,Ross C A.Strain-rate-dependent constitutive equations for concrete[J].Journal of Pressure Vessel Technology,1998,120(4):398―405.
    [18]Zhang M,Wu H J,Li Q M,et al.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part I:Experiments[J].International Journal of Impact Engineering,2009,36(12):1327―1334.
    [19]Li Q M,Meng H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures,2003,40(2):343―360.
    [20]Hao Y,Hao H,Jiang G,et al.Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests[J].Cement and Concrete Research,2013,52:63―70.
    [21]Su H,Xu J,Ren W.Mechanical properties of ceramic fiber-reinforced concrete under quasi-static and dynamic compression[J].Materials&Design,2014,57:426―434.
    [22]Riisgaard B,Ngo T,Mendis P,et al.Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar[C]//Proceedings of the International Conference of Fracture Mechanics of Concrete and Concrete Structures.Ia-Framcos,Catania,Italy,2007:1―4.
    [23]杜修力,窦国钦,李亮,等.纤维高强混凝土的动态力学性能试验研究[J].工程力学,2011,28(4):138―144.Du Xiuli,Dou Guoqin,Li Liang,et al.Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J].Engineering Mechanics,2011,28(4):138―144.(in Chinese)
    [24]李潇,方秦,孔祥振,等.砂浆材料SHPB实验及惯性效应的数值模拟研究[J].工程力学,2018,35(7),187―193.Li Xiao,Fang Qin,Kong Xiangzhen,et al.SHPB test and numerical investigation on the inertial effect of mortar material[J].Engineering Mechanics,2018,35(7),187―193.(in Chinese)
    [25]沈蒲生,梁兴文.混凝土结构设计原理[M].北京:高等教育出版社,2012.Shen Pusheng,Liang Xinwen.Design principle of concrete structure[M].Beijing:Higher Education Press,2012.(in Chinese)
    [26]高光发.动态压缩下混凝土应变率效应压力与横向效应的影响与校正[C].第十一届全国爆炸力学学术会议论文全集,2016.Gao Guangfa.Influence and revision of transverse inertia effect and pressure hardening effect on strain-rate hardening effect of compressive strength of concrete[C].Proceedings of 11th National Conference on Explosion Mechanics,2016.(in Chinese)
    [27]Forrestal M J,Wright T W,Chen W.The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J].International Journal of Impact Engineering,2007,34(3):405―411.
    [28]Wu H,Fang Q,Peng Y,et al.Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner[J].International Journal of Impact Engineering,2015,76:232―250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700