一维磁化套筒惯性聚变模拟程序的设计与校验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and verification of 1D magnetized linear inertial fusion simulation code
  • 作者:赵海龙 ; 张恒第 ; 王刚华 ; 王强
  • 英文作者:Zhao Hailong;Zhang Hengdi;Wang Ganghua;Wang Qiang;Institute of Fluid Physics,CAEP;
  • 关键词:磁化套筒惯性聚变 ; 数值模拟 ; MagLIF-1D
  • 英文关键词:magnetized linear inertial fusion(MagLIF);;numerical simulation;;MagLIF-1D
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:中国工程物理研究院流体物理研究所;
  • 出版日期:2017-05-16 14:02
  • 出版单位:强激光与粒子束
  • 年:2017
  • 期:v.29;No.241
  • 基金:国家自然科学基金项目(11205145)
  • 语种:中文;
  • 页:QJGY201707009
  • 页数:6
  • CN:07
  • ISSN:51-1311/O4
  • 分类号:44-49
摘要
在调研跟踪国外磁化套筒惯性聚变(MagLIF)研究领域最新进展的基础上,以一维磁流体力学方程为基础,结合氘氚燃料能量交换方程,建立一维磁化套筒惯性聚变物理模型,并使用Fortran语言编写完成一维数值模拟程序MagLIF-1D;通过与圣地亚实验室LASNEX,HYDRA等程序计算结果对比展示,完成程序校验工作,讨论后认为程序计算结果存在差异的主要原因可能来自不同程序对于材料状态方程库的选择;通过计算,MagLIF-1D程序可以直接获得内爆速度、燃料压力、燃料密度、聚变产额等关键物理量,这为后续更好地开展磁化套筒惯性聚变实验设计提供了有力工具。
        Combining PTS facility and magnetized linear inertial fusion(MagLIF)research,1Dsimulation code MagLIF-1D was programmed based on MHD theory and DT fuel energy equations.Most challenges came from solving difficulties on boundary coupling,and it's convenient to acquire key parameters such as liner velocity,magnetic field strength,fuel density and fusion yield directly from calculated output.Foundational comparisons with LASNEX and HYDRA codes were made to verify the MagLIF-1Dcode,and differences were discussed and analyzed.The achievements are substantial foundations for further exploring about MagLIF technology,and the calculated results are valuable for future experimental performance.
引文
[1]Ryutov D D.Magnetized target fusion with centimeter-size liners[C]//AIP Conference Proceedings.2005:329-334.
    [2]Sheehey P.Computational and experimental investigation of magnetized target fusion[R].LA-UR-96-2023,1996.
    [3]Sheehey P T,Faehl R J,Kirkpatrick R C,et al.Computational modeling of liner-on-plasma magnetized target fusion experiments[C]//41st Annual Meeting of the Division of Plasma Physics,American Physical Society.1999.
    [4]Wysocki F J,Chrien B E,Idzorek G,et al.Progress with developing a target for magnetized target fusion[C]//11thIEEE International Conference on Plasma Science.1997.
    [5]Schoenberg K F,Siemon R E.Magnetized target fusion.A proof-of-principle research proposal[R].LA-UR-98-2413.1998.
    [6]Jones R D,Mead W C.The physics of burn in magnetized deuterium-tritium plasmas:spherical geometry[J].Nuclear Fusion,1986,26(2):127-137.
    [7]Kirkpatrick R C.Magnetized target fusion(MTF):Principles,status,and international collaboration[C]//Latin American Workshop on Plasma Physics.1998.
    [8]Lindemuth I R,Kirkpatrick R C.Parameter space for magnetized fuel targets in inertial confinement fusion[J].Nuclear Fusion,1983,23(3):263-284.
    [9]Slutz S A,Herrmann M C,Vesey R A,et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Physics of Plasmas,2010,17:056303.
    [10]Woodside S L,Greene A E.Encoding of the Burgess metal electrical resistivity model into SESAME format and its adaptation to the metal nickel[R].LA-11762-MS,1990.
    [11]Freidberg J.等离子体物理与聚变能[M].北京:科学出版社,2011.(Freidberg J.Plasma physics and fusion energy.Beijing:Science Press,2011)
    [12]Basko M M,Kemp A J,Meyer-ter-Vehn J.Ignition conditions for magnetized target fusion in cylindrical geometry[J].Nuclear Fusion,2000,40(1):59-68.
    [13]Slutz S A,Vesey R A.High-gain magnetized inertial fusion[J].Physical Review Letters,2012,108:025003.
    [14]Sefkow A B,Slutz S A,Koning J M,et al.Design of magnetized liner inertial fusion experiments using the Z facility[J].Physics of Plasmas,2014,21:072711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700