在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Corrosion-fatigue Damage and Fracture Mechanism of Cables/Hangers in Service Bridges
  • 作者:杨世聪 ; 张劲泉 ; 姚国文
  • 英文作者:YANG Shi-cong;ZHANG Jin-quan;YAO Guo-wen;School of Civil Engineering, Chongqing Jiaotong University;Research Institute of Highway, Ministry of Transport;
  • 关键词:桥梁工程 ; 机理分析 ; 有限元分析 ; 拉吊索 ; 腐蚀 ; 疲劳 ; 损伤 ; 破断
  • 英文关键词:bridge engineering;;mechanism analysis;;FE analysis;;cable/hanger;;corrosion;;fatigue;;damage;;fracture
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:重庆交通大学土木工程学院;交通运输部公路科学研究院;
  • 出版日期:2019-03-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:v.36;No.291
  • 基金:国家自然科学基金项目(51478071);; 交通运输部建设科技项目(2015318814190);; 重庆市基础与前沿研究计划重点(cstc2015jcyjBX0022)
  • 语种:中文;
  • 页:GLJK201903012
  • 页数:7
  • CN:03
  • ISSN:11-2279/U
  • 分类号:84-90
摘要
拉吊索(悬索桥的吊索、斜拉桥的斜拉索以及中、下承式拱桥的吊索)是拉索桥梁的重要承重构件,其服役可靠性直接影响这些桥梁的安全性。以拉吊索病害特性为导向,通过有限元分析、索体钢丝的腐蚀-疲劳模拟试验,结合理论分析研究拉吊索的损伤与破断机理,以期为拉吊索的设计、养护以及检测提供参考。首先通过有限元分析发现若下锚固区发生0.001 13 rad的转角,该处产生的弯曲应力就有18.8 MPa,研究下锚固区索体钢丝的病害不能忽视弯曲应力的影响,弯曲应力也是造成长拉吊索发生破断病害的因素之一;接着以近5 a中国西南地区雨水中形成酸雨的离子浓度的平均值为基准值,在盐雾腐蚀箱中模拟酸雨环境,将直径7 mm抗拉强度为1 860 MPa的镀锌钢丝在盐雾腐蚀箱中模拟酸雨腐蚀环境与交变应力耦合作用下索体钢丝的腐蚀-疲劳试验,研究其腐蚀-疲劳损伤机理。研究表明:服役的桥梁拉吊索在腐蚀环境和交变应力耦合作用下发生腐蚀-疲劳损伤,腐蚀-疲劳致使构件腐蚀加剧,塑性降低,脆性增强,发生脆性破断,若在设计、检测、评估分析中对结构的腐蚀-疲劳损伤考虑不充分就会有重大安全隐患;弯曲应力也是造成长拉吊索发生破断病害的因素之一;在相同的腐蚀环境下,随着时间的增加,交变应力工况试件的腐蚀程度最大,其次是静态应力工况,无应力工况下的腐蚀程度最小;试件发生腐蚀-疲劳损伤后,其破断应力约为无腐蚀试件的60%,断后伸长率降低得更多,约为无腐蚀试件的40%,断口表现为脆断;发生腐蚀-疲劳损伤的拉吊索钢丝,若有复杂空间应力的作用,更易发生脆断。
        Cables/hangers(suspension cable of suspension bridge, stayed cable of cable-stayed bridge and hangers of middle and lower arch bridges) are the important bearing components of the cable-stayed bridges. Its service reliability directly affects the safety of these bridges. In order to provide reference for design, maintenance and detection of the cables/hangers, the damage and breakage mechanism of the cables/hangers are analyzed by finite element analysis, corrosion-fatigue simulation test of the cable steel wires and theoretical analysis, guided by the disease characteristics of the cables/hangers. First, through FE analysis, it is found that if the rotation angle of 0.001 13 rad occurs in the lower anchorage area, the bending stress will be 18.8 MPa. The influence of bending stress cannot be neglected in the study of the diseases of cable steel wires in the lower anchorage area, and bending stress is also one of the factors causing the breakage of long stayed cable. Then, taking the average ion concentration of acid rain formed in the rainwater of southwestern China in recent 5 years for example. In order to simulate the acid rain environment in salt fog corrosion chamber, the corrosion-fatigue test on galvanized steel wires with diameter of 7 mm and tensile strength of 1 860 MPa is carried out in salt fog corrosion chamber to study the corrosion-fatigue damage mechanism of the cable steel wires under the coupling action of acid rain corrosion environment and alternating stress. The result shows that(1) Corrosion-fatigue damage of cables/hangers in service bridges occurs under the coupling action of corrosive environment and alternating stress. It results in the corrosion intensification, the plasticity reduction, the brittleness enhancement and brittle fracture of components. If the corrosion-fatigue damage of the structures is not considered sufficiently in the design, detection and evaluation analysis, there will be significant safety risks.(2) In the same corrosion environment, with the increase of time, the corrosion degree of alternating stress of the specimen is the greatest, followed by static stress, and the least under non-stress condition.(3) After corrosion-fatigue damage of the specimen, the breaking stress of the is about 60% of that of the non-corrosive one, and the elongation of the cables/hangers decreases more after breaking, which is about 40% of that of the non-corrosive one, and the workpiece is brittle fracture.(4) The steel wires of the cables/hangers with corrosion-fatigue damage is more prone to brittle fracture if they have complex spatial stresses.
引文
[1]吴进星,刘恩德.桥梁吊杆断裂原因及预警技术研究[J].西部交通科技,2013(5):51-55.WU Jin-xing,LIU En-de.Research on Fracture Causes and Early Warning Technology of Bridge Boom[J].Western China Communications Science&Technology,2013(5):51-55.
    [2]马震.四川攀枝花金沙江大桥拉吊索断裂桥面塌陷[DB/OL].(2012-12-12)[2017-8-10].http://www.dzwww.com.xinwenr guoneixinwenr/2012127782544.MA Zhen.Sichuan Panzhihua Jinsha River Bridge with Slings Broken and Deck Collapse[DB/OL].(2012-12-12)[2017-8-10].http://www.dzwww.com.xinwenr guoneixinwenr/2012127782544.
    [3]刘恩德,廖光明,汤国栋.拱桥拉吊索破断分析[J].北方交通,2013(11):61-63.LIU En-de,LIAO Guang-ming,TANG Guo-dong.The Arch Bridge Suspender Breaking Analysis[J].Northern Communications,2013(11):61-63.
    [4]顾安邦,徐君兰.中、下承式拱桥短吊杆结构行为分析[J].重庆交通学院学报,2002,21(4):1-3.GU An-bang,XU Jun-lan.Structural Analysis of Short Suspenders of Half Through or Through Arch Bridge[J].Journal of Chongqing Jiaotong University,2002,21(4):1-3.
    [5]陈金巧.系杆拱桥短拉吊索空间受力特性与损伤机理研究[D].重庆:重庆交通大学,2013.CHEN Jin-qiao.Study on Spatial Stress Characteristics and Damage Mechanism of Short Tension Cable of Tied Arch Bridge[D].Chongqing:Chongqing Jiaotong University,2013.
    [6]吴庆雄,李浏,陈宝春.考虑弯曲刚度的拉吊索面内固有振动的理论计算公式[J].工程力学,2010,27(11):9-15.WU Qing-xiong,LI Liu,CHEN Bao-chun.Theoretical Equations of In-plane Natural Vibration for Cables Considering Bending Stiffness[J].Engineering Mechanics,2010,27(11):9-15.
    [7]何宪飞,陈艾荣.斜拉桥斜拉索局部弯曲应力分析[J].上海公路,1999(增11):85-90.HE Xian-fei,CHEN Ai-rong.Analysis on Local Bending Stress of Cable-stayed Slings of Cable-stayed Bridges[J].Shanghai Highway,1999(S11):85-90.
    [8]郑万山.斜拉桥拉吊索弯曲应力及其控制对策探讨[J].公路交通技术,2013(5):90-93.ZHENG Wan-shan.Bending Stress of Stay Cables of Cable-stayed Bridges and Probe into Control Countermeasures[J].Technology of Highway and Transport,2013(5):90-93.
    [9]GB/T 10125-2012,人造气氛腐蚀实验-盐雾实验[S].GB/T 10125-2012,Corrosion Tests in Artificial Atmospheres-Salt Spray Tests[S].
    [10]JTGT D65-01-2007,公路斜拉桥设计细则[S].JTGT D65-01-2007,Guidelines for Design of Highway Cable-stayed Bridge[S].
    [11]李文治.盐雾环境下斜拉索应力腐蚀与腐蚀疲劳试验研究[D].重庆:重庆交通大学,2015.LI Wen-zhi.Experimental Study on Stress Corrosion and Corrosion Fatigue of Stay Cables under Salt Spray[D].Chongqing:Chongqing Jiaotong University,2015.
    [12]姚国文,刘超越,吴国强.酸雨环境-荷载耦合作用下拉吊索腐蚀损伤机理研究[J].重庆交通大学学报:自然科学版,2016,12(6):6-10.YAO Guo-wen,LIU Chao-yue,WU Guo-qiang.Mechanism of Corrosion Damage of Stayed Cable under the Effect of Acid Rain and Loading Coupling[J].Journal of Chongqing Jiaotong University:Natural Science Edition,2016,12(6):6-10.
    [13]杨世聪,张劲泉,姚国文.基于图像灰度分析的腐蚀钢绞线细观损伤行为[J].固体力学学报,2018,39(3):284-294.YANG Shi-cong,ZHANG Jin-quan,YAO Guo-wen.Mesoscopic Damage Behavior of Corroded Steel Strands Based on Image Gray Analysis[J].Chinese Journal of Solid Mechanics,2018,39(3):284-294.
    [14]HARLOW D G,WEI R P.Probability Approach for Prediction of Corrosion and Corrosion Fatigue Life[J].AIAA Journal,1994,32(10):2073-2079.
    [15]YANG Shi-cong,YAO Guo-wen,ZHANG Jin-quan.Observations on the Damage Behaviors of Corrosion Fatigue in Steel Strands Based on Image Analysis[J].Advances in Mechanical Engineering,2017,9(12):1-10.
    [16]徐阳.腐蚀环境下斜拉索高强钢丝退化状态研究[D].哈尔滨:哈尔滨工业大学,2014.XU Yang.Study on Degradation of High Strength Cable Steel Wire in Corrosive Environment[D].Harbin:Harbin University of Technology,2014.
    [17]SUZUMURA K,NAKAMURA S.Environmental Factors Affecting Corrosion of Galvanized Steel Wires[J].Journal of Materials in Civil Engineering,2004,16(1):1-7.
    [18]李承昌,张劲泉,王辉绵,等.高强不锈钢丝试验研究[J].公路交通科技,2013,30(8):102-107.LI Cheng-chang,ZHANG Jin-quan,WANG Hui-mian,et al.Experimental Study on High-strength Stainless Steel Wires[J].Journal of Highway and Transportation Research and Development,2013,30(8):102-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700