不同热解温度下落叶松半焦特性的演变规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pyrolysis temperature on characteristics evolution of larch char
  • 作者:赵丽萍 ; 王鑫 ; 张彪 ; 吴斯侃 ; 邓桂春
  • 英文作者:Zhao Liping;Wang Xin;Zhang Biao;Wu Sikan;Deng Guichun;SINOPEC Dalian Research Institute of Petroleum and Petrochemicals;Clean Energy Collaborative Innovation Center, Quanzhou Vocational and Technical University;
  • 关键词:生物质 ; 热解温度 ; 半焦 ; 特性 ; 演变
  • 英文关键词:biomass;;pyrolysis temperature;;biochar;;characteristics;;evolution
  • 中文刊名:NCNY
  • 英文刊名:Renewable Energy Resources
  • 机构:中国石油化工股份有限公司大连石油化工研究院;泉州理工学院清洁能源协同创新中心;
  • 出版日期:2019-07-20
  • 出版单位:可再生能源
  • 年:2019
  • 期:v.37;No.251
  • 基金:中国石油化工集团公司科技项目(MH1702);; 福建省清洁能源应用技术协同创新中心项目
  • 语种:中文;
  • 页:NCNY201907005
  • 页数:6
  • CN:07
  • ISSN:21-1469/TK
  • 分类号:28-33
摘要
为探究热解温度对生物质半焦特性的影响规律,文章以落叶松为原料,采用管式电阻炉制取200~1 000℃的热解半焦,利用元素分析、XRD、BET、SEM等测试手段,结合碳-氢-氧相图及Scherrer方程,深入分析了热解温度对生物焦元素组成、石墨化程度、孔隙结构及表观形貌的影响。结果表明:热解温度升高,热解半焦的H/C,O/C原子比减小,芳构化程度加深,碳微晶结构更趋于有序化,片层状碳骨架结构逐渐凸显,石墨化程度增加;400℃下的半焦比表面积最高,微孔对比表面积的贡献大;300℃和500℃是热解半焦结构发生明显变化的两个特殊的温度点。
        Larch was selected as a representative of forestry biomass to study the effect of pyrolysis temperature on characteristics evolution of biochar. Larch samples were treated under the temperature range of 200 ~1 000 ℃ in the pipe resistance furnace. Analysis methods including ultimate analysis, XRD, BET and SEM combined with carbon-hydrogen-oxygen ternary and Scherrer equation were conducted to characterize the element composition, the degree of graphenation, porosity structure and morphology of larch and biochars. The results showed that the H/C and O/C atomic ratio decreased while the structure of biochars becoming further aromatization, orderliness and graphenation with the emerging of the lamellar carbon skeleton structure. Micropore is a great contributor to the specific surface of biochars, and the specific surface reached its maximum at 400 ℃, 300 ℃ and 500 ℃ are two special pyrolysis temperature points where the structural characteristics of biochars change significantly.
引文
[1] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose,cellulose and lignin pyrolysis[J]. Fuel,2007,86(12-13):1781-1788.
    [2]蒋恩臣,陈爱慧,秦丽元,等.木质素热解制备焦炭的试验研究[J].可再生能源,2015,33(7):1066-1071.
    [3]许细薇,蒋恩臣,李治宇,等.毛竹热解炭化演化过程的研究[J].可再生能源,2018,36(12):1758-1763.
    [4] Keown D M,Hayashi J I,LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel,2008,87(7):1127-1132.
    [5] Cetin E,Moghtaderi B,Gupta R,et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel,2004,83(16):2139-2150.
    [6] Asadullah M,Zhang S,Min Z,et al. Effects of biomass char structure on its gasification reactivity[J].Bioresource Technology,2010,101(20):7935-7943.
    [7]王靖,张安东,易维明,等.四种生物质热解半焦的FTIR红外分析[J].山东理工大学学报(自然科学版),2016,29(1):1-4.
    [8]曹俊,肖刚,许啸,等.木质素热解/炭化官能团演变与焦炭形成[J].东南大学学报(自然科学版),2012,42(1):83-87.
    [9] Shafizadeh F,Sekiguchi Y. Development of aromaticity in cellulosic chars[J].Carbon,1983,21(5):511-516.
    [10] Williams P T,Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass[J].Renewable Energy,1996,7(3):233-250.
    [11]吴逸民,赵增立,李海滨,等.生物质主要组分低温热解研究[J].燃料化学学报,2009,37:427-432.
    [12] Lewis I. Chemistry of carbonization[J].Carbon,1982,20(6):519-529.
    [13] Tang W,Wu J,Wang X,et al. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage[J]. Green Energy&Environment,2018,3(1):50-55.
    [14]刘书林,卢春兰,郭明聪,等.X射线衍射技术在炭材料研究中的应用[J].炭素,2018,3(176):21-26.
    [15]付鹏,胡松,向军,等.气化过程中谷壳焦颗粒孔隙结构及分形特性的演化[J].农业工程学报,2012,28(13):276-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700