面向航空发动机的镍基合金磨削技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Grinding Technology of Nickel-based Superalloys Used for Aero-engine
  • 作者:丁文锋 ; 苗情 ; 李本凯 ; 徐九华
  • 英文作者:DING Wenfeng;MIAO Qing;LI Benkai;XU Jiuhua;College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:镍基合金 ; 磨削加工 ; 材料去除机理 ; 砂轮
  • 英文关键词:nickel-based superalloy;;grinding;;material removal mechanism;;grinding wheel
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:南京航空航天大学机电学院;
  • 出版日期:2018-09-12 09:00
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51775275);; 江苏省研究生培养创新工程(KYCX17_0245);; 南京航空航天大学博士论文创新与创优基金(BCXJ17-04)资助项目
  • 语种:中文;
  • 页:JXXB201901020
  • 页数:27
  • CN:01
  • ISSN:11-2187/TH
  • 分类号:201-227
摘要
磨削加工是制造航空发动机镍基合金零件的重要方法。为进一步提高镍基合金磨削加工的材料去除效率、提升工件表面质量,国内外学者开展了诸多基础理论与工艺探索工作。在概述镍基合金材料磨削加工技术发展过程的基础上,全面总结了国内外学者在镍基合金材料磨削去除机理、磨削工艺特性、磨削加工新方法等方面的主要研究成果,并对镍基合金磨削加工技术的难点与发展趋势进行了展望。
        Grinding plays the critical role in manufacturing the aero-engine components composed of nickel-based superalloys. Inorder to further improve the material removal rate and workpiece quality, a large number of researches on grinding technology ofnickel-based superalloys are conducted in terms of the fundamental theory and process expending. In this review article, the basicprinciple and development process of grinding are firstly introduced briefly. Then, the technologies are reviewed detailed concerningthe material removal mechanism, the grinding characteristics, and the novel application type of grinding for nickel-based superalloys.Finally, the development trends during grinding of nickel-based superalloys are proposed as well as the difficulties in grinding of suchmaterials.
引文
[1]EZUGWU E O.Key improvements in the machining of difficult-to-cut aero-space superalloys[J].International Journal of Machine Tools and Manufacture,2005,45:1353-1367.
    [2]POLLOCK T M,TIN S.Nickel-based superalloys for advanced turbine engines:chemistry,microstructure and properties[J].Journal of Propulsion and Power,2006,22:361-374.
    [3]M’SAOUBI R,AXINTE D,SOO S L,et al.High performance cutting of advanced aerospace alloys and composite materials[J].CIRP Annals-Manufacturing Technology,2015,64:557-580.
    [4]《中国航空材料手册》编辑委员会.中国航空材料手册[M].北京:中国标准出版社,2002.Editorial Board of China Aeronautical Materials Handbook.China aeronautical materials handbook[M].Beijing:Standards Press of China,2002.
    [5]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.HUANG Qianyao,LI Hankang.The supearlloys[M].Beijing:Metallurgical Industry Press,2000.
    [6]王建明,杨舒宇.镍基铸造高温合金[M].北京:冶金工业出版社,2014.WANG Jianming,YANG Shuyu.Nickel-based casting superalloys[M].Beijing:Metallurgical Industry Press,2014.
    [7]陶春虎,张兵,张卫方,等.定向凝固高温合金的再结晶[M].北京:国防工业出版社,2014.TAO Chunhu,ZHANG Bing,ZHANG Weifang,et al.Recrystallization of directionally solidified superalloy[M].Beijing:National Defence Industry Press,2014.
    [8]REED R C.The superalloys:Fundamentals and applications[M].New York:Cambridge University Press,2006.
    [9]孙晓峰,金涛,周亦胄,等.镍基单晶高温合金研究进展[J].中国材料进展,2012,31(12):1-9.SUN Xiaofeng,JIN Tao,ZHOU Yizhou,et al.Research progress of nickel-base single crystal superalloys[J].Materials China,2012,31(12):1-9.
    [10]任敬心,康仁科,王西彬.难加工材料磨削技术[M].北京:电子工业出版社,2011.REN Jingxin,KANG Renke,WANG Xibin.Grinding technology of difficult-to-machine materials[M].Beijing:Electronic Industry Press,2011.
    [11]徐西鹏,徐鸿钧,李迎,等.K417航空叶片材料缓进深磨烧伤特征及烧伤程度判别[J].航空学报,1993,14(12):614-620.XU Xipeng,XU Hongjun,LI Ying,et al.Evaluation and characteristics of workpiece burn during creep feed grinding of superalloy K417 for vanes used in aeronautical industry[J].Acta Aeronautica et Astronautica Sinica,1993,14(12):614-620.
    [12]任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011.REN Jingxin,HUA Dingan.Principle of grinding[M].Beijing:Electronic Industry Press,2011.
    [13]李峰.镍基高温合金高效磨削砂轮磨损的研究[D].南京:南京航空航天大学,2012.LI Feng.Wear of grinding wheels in high efficiency grinding of nickel based superalloy[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.
    [14]SUTOWSKI P,SWIECIK R.The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals[J].International Journal of Advanced Manufacturing Technology,2018,94:1263-1282.
    [15]FEDOROV S,SWE M H,KAPTANOV A,et al.Wear of carbide inserts with complex surface treatment when milling nickel alloy[J].Mechanics and Industry,2017,18(7):710.
    [16]ZHAO Y J,LI H N,ZHU L D,et al.Machined brittle material surface in grinding:Modeling,experimental validation,and image-processing-based surface analysis[J].International Journal of Advanced Manufacturing Technology,2017,93:2875-2894.
    [17]LI Z P,ZHANG F H,ZHANG Y,et al.Experimental investigation on the surface and subsurface damages characteristics and formation mechanisms in ultra-precision grinding of SiC[J].International Journal of Advanced Manufacturing Technology,2017,92:2677-2688.
    [18]ZHANG Z Y,DU Y F,WANG B,et al.Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding[J].Tribology Letters,2017,65:132-145.
    [19]ZHOU HX,YUAN BY,LYU JL,et al.A novel approach of deposition for uniform diamond films on circular saw blades[J].Plasma Science and Technology,2017,19:UNSP 115502.
    [20]CHEN CCA,GUPTA A.Modeling and analysis of wire motion during rocking mode diamond wire sawing of mono-crystalline alumina oxide wafer[J].International Journal of Advanced Manufacturing Technology,2018,95:3453-3463.
    [21]ADIBI H,ESMAEILI H,REZAEI S M.Study on minimum quantity lubrication(MQL)in grinding of carbon fiber-reinforced SiC matrix composites(CMCs)[J].International Journal of Advanced Manufacturing Technology,2018,95:3753-3767.
    [22]徐正扬.发动机叶片精密电解加工关键技术研究[D].南京:南京航空航天大学,2008.XU Zhengyang.Key technologies research on precision turbine blade ECM[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.
    [23]王建业,林苏文.叶片电解加工技术的新发展[J].航空制造技术,1998(6):17-20.WANG Jianye,LIN Suwen.New development of blade ECM technology[J].Aeronautical Manufacturing Technology,1998(6):17-20.
    [24]徐庆.整体叶盘多通道电解加工关键技术研究[D].南京:南京航空航天大学,2011.XU Qing.Key Technologies Research on electrochemical machining of blisk multi-tunnels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.
    [25]KLOCKE F,WELLING D,DIECKMANN J,et al.Developments in Wire-EDM for the manufacturing of fir tree Slots in turbine discs made of Inconel 718[J].Key Engineering Materials,2012,504-506:1177-1182.
    [26]陶云亚,薛伟鹏,唐洪飞,等.激光增材制造技术在涡轮叶片中的应用[J].燃气涡轮试验与研究,2016,29:44-55.TAO Yunya,XUE Weipeng,TANG Hongfei,et al.Application of laser additive manufacturing technology in turbine blade and vane[J].Gas Turbine Experiment and Research,2016,29:44-55.
    [27]张小伟.金属增材制造技术在航空发动机领域的应用[J].航空动力学报,2016,31(1):10-14.ZHANG Xiaowei.Application of metal additive manufacturing in aero-engine[J].Journal of Aerospace Power,2016,31(1):10-14.
    [28]WELLING D.Results of surface integrity and fatigue study of Wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel718[J].Procedia CIRP,2014,13:339-344.
    [29]KLOCKE F,ZEIS M,KLINK A,et al.Experimental research on the electrochemical machining of modern Titanium-and Nickel-based alloys for aero engine components[J].Procedia CIRP,2013,6:369-373.
    [30]SOO S L,ANTAR M T,ASPINWALL D K,et al.The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy[J].Procedia CIRP,2013,6:215-219.
    [31]KLOCKE F,KLINK A,VESELOVA D,et al.Turbomachinery component manufacture by application of electrochemical,electro-physical and photonic processes[J].CIRP Annals-Manufacturing Technology,2014,63:703-726.
    [32]范茂祥.涡轮叶片榫齿加工技术的发展[J].航空制造技术,1988,5:26-29.FAN Maoxing.Development of machining methods for turbine blade roots[J].Aeronautical Manufacturing Technology,1988,5:26-29.
    [33]姜雪梅.高速拉削工艺的研究与应用[J].制造技术与机床,2003(3):42-46.JIANG Xuemei.Research and application of high-speed broaching process[J].Technology and Test,2003(3):42-46.
    [34]任军学,田卫军,田荣鑫,等.开式整体叶盘通道侧铣粗加工技术的研究[J].机械科学与技术,2008,27(10):1220-1224.REN Junxue,TIAN Weijun,TIAN Rongxin,et al.A study of the rough milling technique of blisk tunnel[J].Mechanical Science and Technology for Aerospace Engineering,2008,27(10):1220-1224.
    [35]丁文锋,徐九华,杨长勇,等.航空发动机零件高效精密磨削技术的发展与应用[J].航空制造技术,2014(12):26-29.DING Wenfeng,XU Jiuhua,YANG Changyong,et al.Development and application of high efficiency and precision grinding technology for aeroengine components[J].Aeronautical Manufacturing Technology,2014(12):26-29.
    [36]HASHIMOTO F,YAMAGUCHI H,KRAJNIK P,et al.Abrasive fine-finishing technology[J].CIRPAnnals-Manufacturing Technology,2016,65:597-620.
    [37]ZHAO Y J,YAN Y H,SONG K C,et al.Intelligent assessment of subsurface cracks in optical glass generated in mechanical grinding process[J].Advances in Engineering Software,2018,115:17-25.
    [38]ZHANG Y Z,FANG C F,HUANG G Q,et al.Modeling and simulation of the distribution of undeformed chip thickness in surface grinding[J].International Journal of Machine Tools and Manufacture,2018,127:14-27.
    [39]SHARIF ULLAH AMM,CAGGIANO A,KUBO A,et al.Elucidating grinding mechanism by theoretical and experimental investigations[J].Materials,2018,11:27419.
    [40]MAO C,LIANG C,ZHANG Y C,et al.Grinding characteristics of cBN-WC-10Co composites[J].Ceramics International,2017,43(18):16539-16547.
    [41]HUANG G Q,ZHANG M Q,GUO H,et al.The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing[J].International Journal of Abrasive Technology,2017,8(2):133-146.
    [42]LIPINSKI D,BALASZ B,RYPINA L.Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generation[J].International Journal of Advanced Manufacturing Technology,2018,94:1335-1347.
    [43]YU T Y,BASTAWROS A F,CHANDRA A.Experimental and modeling characterization of wear and life expectancy of electroplated CBN grinding wheels[J].International Journal of Machine Tools and Manufacture,2017,121:70-80.
    [44]LUO M,LUO H,ZHANG D,et al.Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy[J].Journal of Materials Processing Technology,2018,252:105-115.
    [45]YAO C F,TAN L,YANG P,et al.Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17[J].International Journal of Advanced Manufacturing Technology,2018,94:1699-1710.
    [46]KACALAK W,RYPINA L,TANDECKA K.Modelling and analysis of displacement of materials characterized by different properties in the zone of microcutting[J].Journal of Machine Engineering,2015,15(4):46-58.
    [47]ZHANG Q,ZHANG S,SHI W H.Modeling of surface topography based on relationship between feed per tooth and radial depth of cut in ball-end milling of AISI H13steel[J].International Journal of Advanced Manufacturing Technology,2018,95:4199-4209.
    [48]LUO M,LUO H,AXINTE D,et al.A wireless instrumented milling cutter system with embedded PVDFsensors[J].Mechanical Systems and Signal Processing,2018,110:556-568.
    [49]BARAHENI M,AMINI S.Feasibility study of delamination in rotary ultrasonic-assisted drilling of glass fiber reinforced plastics[J].Journal of Reinforced Plastics and Composites,2018,37(1):3-12.
    [50]YAO C F,WU D X,MA L F,et al.Surface integrity evolution and fatigue evaluation after milling mode,shot-peening and polishing mode for TB6 titanium alloy[J],Applied Surface Science,2016.11.30,387:1257-1264.
    [51]WEBSTER J,TRICARD M.Innovations in abrasive products for precision grinding[J].CIRP AnnalsManufacturing Technology,2004,53(2):597-617.
    [52]KOPAC J,KRAJNIK P.High-performance grinding-Areview[J].Journal of Materials Processing Technology,2006.175:278-284.
    [53]JACKSON M J,DAVIS C J,HITCHINER M P,et al.High-speed grinding with CBN grinding wheels-applications and future technology[J].Journal of Materials Processing Technology,2001,110:78-88.
    [54]KLOCKE F,SOO S L,KARPUSCHEWSKI B,et al.Abrasive machining of advanced aerospace alloys and composites[J].CIRP Annals-Manufacturing Technology,2015,64:581-604.
    [55]SOO S L,NG E G,DEWES R C,et al.Point grinding of nickel-based superalloys[J].Industrial Diamond Review2002,62(2):109-116.
    [56]李长河.磨削技术的历史、现状和展望[J].制造技术与机床,2012(4):17-22.LI Changhe.History,status and prospect of grinding technology[J].Manufacturing Technology and Machine Tools,2012(4):17-22.
    [57]赵恒华,宋涛,蔡光起.磨削加工技术的发展趋势[J].制造技术与机床,2012(1):55-58.ZHAO Henghua,SONG Tao,CAI Guangqi.The development trends of grinding process technology[J],Manufacturing Technology and Machine Tools,2012(1):55-58.
    [58]徐九华,张志伟,傅玉灿.镍基高温合金高效成型磨削的研究进展与展望[J].航空学报,2014,35(2):351-360.XU Jiuhua,ZHANG Zhiwei,FU Yucan.Review and prospect on high efficiency profile grinding of nickel-based superalloys[J].Acta Aeronautica et Astronautica Sinica,2014,35(2):351-360.
    [59]赫青山.热管砂轮高效磨削加工技术研究[D].南京:南京航空航天大学,2013.HE Qingshan.Study on high efficiency grinding with heat pipe grinding wheels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
    [60]YANG L,FU Y C,XU J H,et al.Structural design of a carbon fiber-reinforced polymer wheel for ultra-high speed grinding[J].Materials and Design,2015,88:827-836.
    [61]王强国,高航,裴志坚,等.KDP晶体超声辅助磨削的亚表面损伤研究[J].人工晶体学报,2010,39(1):67-71.WANG Qiangguo,GAO Hang,PEI Zhijian,et al.Study on the subsurface damage of KDP crystal ground with ultrasonic vibration assistance[J].Journal of Synthetic Crystals,2010,39(1):67-71.
    [62]SUN J L,QIN F,CHEN P,et al.A predictive model of grinding force in silicon wafer self-rotating grinding[J].International Journal of Machine Tools and Manufacture,2016,109:74-86.
    [63]LI H N,YU T B,ZHU L D,et al.Evaluation of grinding-induced subsurface damage in optical glass BK7[J].Journal of Materials Processing Technology,2016,229:785-794.
    [64]DENKENA B,GOTTWIK L,GROVE T,et al.Temperature and energy partition for grinding of mixed oxide ceramics[J].Production Engineering,2017(9):1-9.
    [65]田霖,徐九华,苏宏华,等.金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析[J].金刚石与磨料磨具工程,2009(2):26-30.TIAN Lin,XU Jiuhua,SU Honghua,et al.Analysis on surface roughness and surface topography of ferrite ground with diamond grinding wheel[J].Diamond and Abrasives Engineering,2009(2):26-30.
    [66]ZENG X,LI J H,JI S M,et al.Research on machining characteristics of double-layer elastomer in pneumatic wheel method[J].International Journal of Advanced Manufacturing Technology,2017,92:1329-1338
    [67]NADOLNY K,HERMAN D.Effect of vitrified bond microstructure and volume fraction in the grinding wheel on traverse internal cylindrical grinding of Inconel alloy600[J].International Journal of Advanced Manufacturing and Technology,2015,81:905-915.
    [68]TEICHER U,GHOSH A,CHATTOPADHYAY A B,et al.On the grindability of titanium alloy by brazed type monolayered superabrasive grinding wheels[J].International Journal of Machine Tools and Manufacture,2006,46:620-622.
    [69]HOOD R,COOPER P,ASPINWALL D K,et al.Creep feed grinding ofγ-TiAl using single layer electroplated diamond superabrasive wheels[J].CIRP Journal of Manufacturing Science and Technoloy,2015,11:36-44.
    [70]SIM K H,ZHANG F H,WANG G F,et al.Experimental comparison of ground surface characteristics for P/MTi2AlNb-based alloy using CBN and diamond grinding wheels[J].International Journal of Advanced Manufacturing Technology,2018,94:1885-1894.
    [71]OHBUCHI Y,MATSUO T.Force and chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains[J].CIRP-Manufacturing Technology,1991,40:327-330.
    [72]FENG B F,CAI G Q.Experimental study on the single-grit grinding Titanium alloy TC4 and superalloy GH4169[J].Key Engineering Materials,2001,202-203:115-120.
    [73]MEI Y M,YU Z H,YANG Z S.Numerical investigation of the evolution of grit fracture and its impact on cutting performance in single grit grinding[J].International Journal of Advanced Manufacturing Technology,2017,89:3271-3284.
    [74]ANDERSON D,WARKENTIN A,BAUER R.Experimental and numerical investigations of single abrasive-grain cutting[J].International Journal of Machine Tools and Manufacture,2011,51:898-910.
    [75]OPOZ T T,CHEN X.Experimental investigation of material removal mechanism in single grit grinding[J].International Journal of Machine Tools and Manufacture,2012,63:32-40.
    [76]SUBHASH G,ZHANG W.Investigation of the overall friction coefficient in single-pass scratch test[J].Wear,2002,252:123-134.
    [77]DAI C W,DING W F,XU J H,et al.Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain[J].International Journal of Machine Tools and Manufacture,2017,113:49-58.
    [78]田霖,傅玉灿,杨路,等.基于速度效应的高温合金高速超高速磨削成屑过程及磨削力研究[J].机械工程学报,2013,49(9),169-177.TIAN Lin,FU Yucan,YANG Lu,et al.Investigation of the speed effect on critical thickness of chip formation and grinding force in high speed and ultra-high speed grinding of superalloy[J].Journal of Mechanical Engineering,2013,49(9),169-177.
    [79]YAO C F,JIN Q C,HUANG X C,et al.Research on surface integrity of grinding Inconel718[J].International Journal of Advanced Manufacturing Technology,2013,65:1019-1030.
    [80]TAWAKOLI T,AZARHOUSHANG B,RASIFARD A.Wear behavior of a vitrified bond CBN wheel by ultrasonic-assisted creep feed profile grinding of Inconel718[J].Advanced Materials Research,2011,325:122-127.
    [81]田霖.基于磨粒有序排布砂轮的高速磨削基础研究[D].南京:南京航空航天大学,2013.TIAN Lin.Fundamental research on the high speed grinding with regular abrasive distribution wheel[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
    [82]FAN Y H,WANG T,HAO Z P,et al.Research of plastic behavior in high-speed cutting Inconel718 based on multi-scale simulation[J].International Journal of Advanced Manufacturing Technology,2018,94:3731-3739.
    [83]LI S S,WU Y B,NOMURA M.Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel718[J].International Journal of Advanced Manufacturing Technology,2016,86:1113-1125.
    [84]QI H,WEN D H,YUAN Q L,et al.Numerical investigation on particle impact erosion in ultrasonic-assisted abrasive slurry jet micro-machining of glasses[J].Powder Technology,2017,314:627-634.
    [85]QI H,WEN D H,LU C D,et al.Numerical and experimental study on ultrasonic vibration-assisted micro-channeling of glasses using an abrasive slurry jet[J].International Journal of Mechanical Sciences,2016,110:94-107.
    [86]CHEN Z Z,TIAN L,FU Y C,et al.Chip formation of nickel-based superalloy in high speed grinding with single diamond grit[J].International Journal of Abrasive Technology,2012,5(2):93-106.
    [87]TIAN L,FU Y C,XU J H,et al.The influence of speed on material removal mechanism in high speed grinding with single grit[J].International Journal of Machine Tools and Manufacture,2015,89:192-201.
    [88]BRINKSMELER E,GLWERZEW A.Chip formation mechanisms in grinding at low speeds[J].CIRPAnnals-Manufacturing Technology,2003,52:253-258.
    [89]OPOZ T T,CHEN X.Experimental study on single grit grinding of Inconel 718[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014:1-14.
    [90]OPOZ T T,CHEN X.Numerical simulation of single grit grinding[C]//Proceeding of the 16th International Conference on Automation and Computing,Birmingham,UK,2010.
    [91]ZAHEDI A,AKBARI J.FEM analysis of single grit chip formation in creep-feed grinding of Inconel 718superalloy[J].Advanced Materials Research,2011,325:128-133.
    [92]CHEN X,OPOZ T T,OLUWAJOBI A.Analysis of grinding surface creation by single-grit approach[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121007-1.
    [93]MATSUO T,TOYOURA S,OSHIMA E,et al.Effect of grain shape on cutting force in superabrasive single-grit tests[J].CIRP-Manufacturing Technology,1989,38:323-326.
    [94]TSO P L.Study on the grinding of Inconel 718[J].Journal of Materials Processing Technology,1995,55:421-426.
    [95]苏旭峰.高温合金缓进磨削烧伤机理实验研究[J].中国计量学院学报,2009,20(1):46-50.SU Xufeng.On creeping grinding and crack experiment of superalloys[J].Journal of China University of Metrology,2009,20(1):46-50.
    [96]XU X P,YU Y Q,HUANG H.Mechanisms of abrasive wear in the grinding of titanium(TC4)and nickel(K417)alloys[J].Wear,2003,255:1421-1426.
    [97]OSTERLE W,LI P X.Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates[J].Materials Science and Engineering A,1997,238:357-366.
    [98]张志伟.镍基高温合金高效深切成型磨削关键技术研究[D].南京:南京航空航天大学,2014.ZHANG Zhiwei.Research on key technology of high efficiency profile grinding of nickel-based superalloy[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.
    [99]BRINSMEIER E,MEYER D,HUESMANN-CORDES AG,et al.Metalworking fluids mechanisms and performance[J].CIRP Annals-Manufacturing Technology,2015,64:605-628.
    [100]BRIAN ROWE W.Temperatures in grinding-a review[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121001-1.
    [101]LI B K,LI C H,ZHANG Y B,et al.Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy[J].International Journal of Advanced Manufacturing Technology,2017,89:3459-3474.
    [102]任敬心,杨茂奎,李雅卿,等.镍基高温合金的磨削特征[J].航空学报,1997,18(6):755-758.REN Jingxin,YANG Maokui,LI Yaqing,et al.Grinding characteristic of nickel-based superalloy[J].Acta Aeronautica et Astronautica Sinica,1997,18(6):755-758.
    [103]ZENG Q D,LIU G,LIU L,et al.Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014,229(2):238-250.
    [104]傅玉灿,田霖,徐九华,等.磨削过程建模与仿真研究现状[J].机械工程学报,2015,51(7):197-205.FU Yucan,TIAN Lin,XU Jiuhua et al.Development and application on the grinding process modeling and simulation[J].Journal of Mechanical Engineering,2015,51(7):197-205.
    [105]PATNAIK D U S,SINGH V,VENKATESWARA R P.Anew model for grinding force prediction and analysis[J].International Journal of Machine Tools and Manufacture,2010,50:231-240.
    [106]LI H N,AXINTE D.On a stochastically grain-discretized model for 2D/3D temperature mapping prediction in grinding[J].International Journal of Machine Tools and Manufacture,2017,116:60-76.
    [107]ABU-MAHFOUZ I,ARISS O E,ESFAKUR R A H M,et al.Surface roughness prediction as a classification problem using support vector machine[J].International Journal of Advanced Manufacturing Technology,2017,92:803-815.
    [108]ULUTAN D,OZEL T.Machining induced surface integrity in titanium and nickel alloys:A review[J].International Journal of Machine Tools and Manufacture,2011,51:250-280.
    [109]ZHANG D,LI C,ZHANG Y,et al.Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding[J].International Journal of Advanced Manufacturing Technology,2015,78:1275-1288.
    [110]LIU Q,HUANG G Q,XU X P,et al.A study on the surface grinding of 2D C/SiC composites[J].International Journal of Advanced Manufacturing Technology,2017,93:1595-1603.
    [111]MUELLER S,WIRTZ C,TRAUTH D,et al.Material removal mechanisms in grinding of two-phase brittle materials[J].International Journal of Advanced Manufacturing Technology,2018,95:287-298.
    [112]ZHANG Z Y,SHI Z F,DU Y F,et al.A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry[J].Applied Surface Science,2018,427:409-415.
    [113]LIU Q,HUANG G Q,FANG C F,et al.Experimental investigations on grinding characteristics and removal mechanisms of 2D-Cf/C-Si C composites based on reinforced fiber orientations[J].Ceramics International,2017,43(17):15266-15274.
    [114]THAKUR A,GANGOPADHYAY S.State-of-the-art in surface integrity in machining of nickel-based superalloys[J].International Journal of Machine Tools and Manufacture,2016,100:25-54.
    [115]QI H,FAN J M,WANG J,et al.Impact erosion by high velocity micro-particles on a quartz crystal[J].Tribology International,2015,82:200-210.
    [116]SINHA M K,SETTI D,GHOSH S,et al.An investigation on surface burn during grinding of Inconel 718[J].Journal of Manufacturing Processes,2016,21:124-133.
    [117]BHADURI D,SOO S L,NOVOVIC D,et al.Ultrasonic assisted creep feed grinding of Inconel 718[J].Procedia CIRP 2013,6:615-620.
    [118]YAO C F,JIN Q C,HUANG X C,et al.Research on surface integrity of grinding Inconel718[J].International Journal of Advanced Manufacturing Technology,2013,65:1019-1030.
    [119]XU X P,YU Y Q,XU H J.Effect of grinding temperatures on the surface integrity of a nickel-based superalloy[J].Journal of Materials Processing Technology,2002,129:359-363.
    [120]LI H N,AXINTE D.Textured grinding wheels:Areview[J].International Journal of Machine Tools and Manufacture,2016,109:8-35.
    [121]CHEN M,LI X T,SUN F G,et al.Studies on the grinding characteristics of directionally solidified nickel-based superalloy[J].Journal of Materials Processing Technology,2001,116:165-169.
    [122]ZENG Q D,LIU G,LIU L,et al.Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2014,229(2):238-250.
    [123]XU X P,YU Y Q.XPS and SEM characterization of wheel/workpiece interface in grinding of superalloy[J].Surface and Interface Analysis,2002,33:343-350.
    [124]BARRETO L O,RUZZI R S.Performance evaluation of the minimum quantity of lubricant technique with auxiliary cleaning of the grinding wheel in cylindrical grinding of N2711 steel[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121018.
    [125]YANG M,LI C H,ZHANG Y B,et al.Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J].International Journal of Machine Tools and Manufacture,2017,122:55-65.
    [126]黄春新,张定华,姚倡锋,等.磨削参数对GH4169高温合金磨削表面特征影响研究[J].中国机械工程,2014,25(2):210-214.HUANG Chunxin,ZHANG Dinghua,YAO Changfeng,et al.A study of influence of grinding parameters on surface characteristics during grinding GH4169superalloy[J].China Mechanical Engineering,2014,25(2):210-214.
    [127]BHADURI D,SOO S L,ASPINWALL K K,et al.Astudy on ultrasonic assisted creep feed grinding of nickel based superalloys[J].Procedia CIRP,2012,1:359-364.
    [128]LIU Q,CHEN X,GINDY N.Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding[J].International Journal of Advanced Manufacturing Technology,2007,33:940-951.
    [129]YANG X,LIU C R.Machining titanium and its alloys[J].Machining Science and Technology,1999,3(1):107-139.
    [130]CAO D J,TA N,ZHANG L.Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification[J].Progress in Natural Science:Materials International,2017,27(6):678-686.
    [131]CAO Y L,GUAN J Y,LI B,et al.Modeling and simulation of grinding surface topography considering wheel vibration[J].International Journal of Advanced Manufacturing Technology,2013,66:937-945.
    [132]YU H,WANG J,LU Y.Simulation of grinding surface roughness using the grinding wheel with an abrasive phyllotactic pattern[J].International Journal of Advanced Manufacturing Technology,2016,84:861-871.
    [133]DING W F,DAI C W,YU T Y,et al.Grinding performance of textured monolayer CBN wheels:Undeformed chip thickness nonuniformity modeling and ground surface topography prediction[J].International Journal of Machine Tools and Manufacture,2017,122:66-80.
    [134]LU X C,ZHANG H W,LU K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J].Science,2013,342:337-340.
    [135]BARRY J,BYRNE J.TEM study on surface white layer in two turned hardened steels[J].Materials Science and Engineering A,2002,325:356-364.
    [136]陈珍珍.多孔复合结合剂立方氮化硼砂轮高效磨削研究[D].南京:南京航空航天大学,2014.CHEN Zhenzhen.High-efficiency grinding with porous composite-bonded CBN wheels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.
    [137]NOUIOUA M,YALLESE MA,KHETTABI R,et al.Comparative assessment of cooling conditions,including MQL technology on machining factors in an environmentally friendly approach[J].International Journal of Advanced Manufacturing Technology 2017,91:3079-3094.
    [138]DING W F,BARBARA L,ZHU Y J,et al.Review on monolayer CBN superabrasive wheels for grinding metallic materials[J].Chinese Journal of Aeronautics,2017,30(1):109-134.
    [139]DING W F,XU J H,CHEN Z Z,et al.Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels[J].Chinese Journal of Aeronautics,2010,23:501-510.
    [140]ZHAO Z C,FU Y C,XU J H,et al.An investigation on high-efficiency profile grinding of directional solidified nickel-based superalloys DZ125 with electroplated CBNwheel[J].International Journal of Advanced Manufacturing Technology,2016,83:1-11.
    [141]SPUR G,NIEWELT W.Creep feed grinding of nickel-based alloys with advanced corundum and with CBN grinding wheels[J].Precision Engineering,1994:321-326.
    [142]杜随更,姜哲,张定华,等.GH4169DA磨削表面变质层软化机理[J].航空学报,2014,35:1446-1451.DU Suigeng,JIANG Zhe,ZHANG Dinghua,et al.Softening mechanism of grinding surface metamorphic layer of GH4169DA[J].Acta Aeronautica et Astronautica Sinica,2014,35:1446-1451.
    [143]ARRAZOLA P J,KORTABARRIA A,MADARIAGA A,et al.On the machining induced residual stresses in IN718nickel-based alloy:Experiments and predictions with finite element simulation[J].Simulation Modelling Practice and Theory,2014,41:87-103.
    [144]DING W F,ZHANG L C,LI Z,et al.Review on grinding-induced residual stresses in metallic materials[J].International Journal of Advanced Manufacturing Technology,2017,88:2939-2968.
    [145]MAHDI M,ZHANG.L C.Residual stresses in ground components caused by coupled thermal and mechanical plastic deformation[J].Journal of Materials Processing Technology,1999,95:238-245.
    [146]PENG R L,ZHOU J,JOHANSSON S,et al.Surface integrity and the influence of tool wear in high speed machining of Inconel718[C]//Proceedings of the 13th International Conference on Fracture,Beijing,China,June16-21,2013.
    [147]OSTERLE W,LI P X,NOLZE G.Influence of surface finishing on residual stress depth profiles of a coarse-grained nickel-base superalloy[J].Materials Science and Engineering A,1999,262:308-311.
    [148]付鹏飞,左从进,毛智勇,等.电子束焊接GH536合金残余应力分布小孔法测试[J].焊接学报,2005,26(11):21-23.FU Pengfei,ZUO Congjin,MAO Zhiyong,et al.Weld residual stress distribution of GH536 superalloy with EBW measured by Mathar method[J].Transactions of the China Welding Institution,2005,26(11):21-23.
    [149]YANG J,JIANG H,YAO Z H,et al.Limitations of calculating stress relaxation limit by function-fitting of Inconel718 superalloy[J].Materials Letters,2018,221:89-92.
    [150]JIA D Z,LI C H,ZHANG Y B,et al.Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids[J].Precision Engineering,2017,50:248-262.
    [151]ZHANG M J,TAN Y,ZHOU F J,et al.Analysis of flow field in cutting zone for spiral orderly distributed fiber tool[J].International Journal of Advanced Manufacturing Technology,2017,92:4345-4354.
    [152]ZHANG Y,LI C,JIA D,et al.Experimental evaluation of MoS2,nanoparticles in jet MQL grinding with different types of vegetable oil as base oil[J].Journal of Cleaner Production,2015,87(1):930-940.
    [153]WANG P Z,HE Z S,ZHANG Y X,et al.Control of grinding surface residual stress of inconel 718[J].Procedia Engineering,2017,174:504-511.
    [154]MEI Y M,YU Z H,YANG Z S.Experimental investigation of correlation between attrition wear and features of acoustic emission signals in single-grit grinding[J].International Journal of Advanced Manufacturing Technology,2017,93:2275-2287.
    [155]WANG R Q,DAI S J,ZHANG H B,et al.The temperature field study on the annular heat source model in large surface grinding by cup wheel[J].International Journal of Advanced Manufacturing Technology,2017,93:3261-3273.
    [156]BELL A,JIN T,STEPHENSON D J.Burn threshold prediction for high efficiency deep grinding[J].International Journal of Machine Tools and Manufacture,2011,51:433-438.
    [157]NADOLNY K,ROKOSZ K,KAPLONEK W,et al.SEM-EDS-based analysis of the amorphous carbon-treated grinding wheel active surface after reciprocal internal cylindrical grinding of titanium grade2?alloy[J].International Journal of Advanced Manufacturing Technology,2017,90:2293-2308.
    [158]ABDULLAH A,FARHADI A,PAK A.Ultrasonicassisted dry creep-feed up-grinding of superalloy Inconel738LC[J].Experimental Mechanics,2012,52:843-853.
    [159]SHI Z,MALKIN S.Wear of Electroplated CBN Grinding Wheels[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2006,128:1-9.
    [160]ASPINWALL D K,SOO S L,CURTIS D T,et al.Profiled superabrasive grinding wheels for the machining of a nickel based superalloy[J].CIRP Annals-Manufacturing Technology,2007,56(1):335-338.
    [161]LI S S,WU Y B,FUJIMOTO M,et al.Improving the working surface condition of electroplated CBN grinding quill in surface grinding of Inconel 718 by the assistance of ultrasonic vibration[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2016,138(7):722-727.
    [162]GIFT F C,MISIOLEK W Z.Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride(CBN)grinding wheels[J].Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126:451-458.
    [163]GIFT F C,MISIOLEK W Z,FORCE E.Mechanics of loading for electroplated cubic boron nitride(CBN)wheels during grinding of a nickel-based superalloy in water-based lubricating fluids[J].Journal of Tribology,2004,126(4):795-801.
    [164]CURTIS D T,SOO S L,ASPINWALL D K,et al.Evaluation of workpiece surface integrity of following point grinding of advanced titanium and nickel based alloys[J],Procedia CIRP,2016,45:47-50.
    [165]HASUDA Y,HANDA A,KOBORI Y,et al.Grinding of superalloys using metal-bonded CBN wheel[J].Key Engineering Materials,2012,523-524:143-148.
    [166]ZHAO Z C,FU Y C,XU J H,et al.Behavior and quantitative characterization of CBN wheel wear in high-speed grinding of nickel-based superalloy[J].International Journal of Advanced Manufacturing Technology,2016:1-11.
    [167]ZHOU Y G,GONG Y D,ZHU Z X,et al.Modelling and optimisation of surface roughness from microgrinding of nickel-based single crystal superalloy using the response surface methodology and genetic algorithm[J].International Journal of Advanced Manufacturing Technology,2016,85:2607-2622.
    [168]ZHOU Y G,GONG Y D,CAI M,et al.Study on surface quality and subsurface recrystallization of nickel-based single-crystal superalloy in micro-grinding[J].International Journal of Advanced Manufacturing Technology,2017,90:1749-1768.
    [169]ERANKI J,XIAO G,MALKIN S.Evaluating the performance of“seeded gel”grinding wheels[J].Journal of Materials Processing Technology,1992,32:609-625.
    [170]DANBATTA Y S,SARHAN A A D,SAYUTI M.et al.Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications-a review[J].International Journal of Advanced Manufacturing Technology,2017,6:1-34.
    [171]冯平法,王健健,张建富,等.硬脆材料旋转超声加工技术的研究现状及展望[J].机械工程学报,2017,53(19):3-21.FENG Pingfa,WANG Jianjian,ZHANG Jianfu,et al.Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J].Journal of Mechanical Engineering,2017,53(19):3-21.
    [172]张洪丽.超声振动辅助磨削技术及机理研究[D].济南:山东大学,2007.ZHANG Hongli.Study on the technology and mechanism of ultrasonic vibration assisted grinding[D].Jinan:Shandong University,2007.
    [173]QU N S,ZHANG Q L,FANG X L,et al.Experimental investigation on electrochemical grinding of Inconel718[J].Procedia CIRP,2015,35:16-19.
    [174]LAUWERS B,KLOCKE F,KLINK A,et al.Hybrid processes in manufacturing[J].CIRPAnnals-Manufacturing Technology,2014,63(2):561-583.
    [175]CURTIS D T,SOO S L,ASPINWALL D K,et al.Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points[J].CIRP Annals-Manufacturing Technology,2009,58(1):173-176.
    [176]刘志东.放电诱导可控烧蚀高效加工典型工艺方法[J].电加工与模具,2012(1):1-6.LIU Zhidong.Series typical efficient machining methods of controllable burning by discharge-induced[J].Electromachining and Mould,2012(1):1-6.
    [177]PARTHASARATHY A,MALKIN S.Effect of fluid application conditions on grinding behavior[J].Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2010,224:225-235.
    [178]IRANI R A,BAUER R J,WARKENTIN A.A review of cutting fluid application in the grinding process[J].International Journal of Machine Tools and Manufacture,2005,45:1696-1705.
    [179]PENG R T,HUANG X F,TANG X Z,et al.Performance of a pressurized internal-cooling slotted grinding wheel system[J].International Journal of Advanced Manufacturing Technology,2018,94:2239-2254.
    [180]HEINZEL C,ANTSUPOV G.Prevention of wheel clogging in creep feed grinding by efficient tool cleaning[J].CIRP Annals-Manufacturing Technology,2012,61:323-326.
    [181]MORGAN M N,JACKSON A R,WU H,et al.Optimisation of fluid application in grinding[J].CIRPAnnals-Manufacturing Technology,2008,57:363-366.
    [182]WEBSTER J A,CUI C,MINDEK JR R B.Grinding fluid application system design[J].CIRP Annals-Manufacturing Technology,1995,44:333-338.
    [183]LI B K,LI C H,ZHANG Y B,et al.Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil[J].Chinese Journal of Aeronautics,2016,29:1084-1095.
    [184]ZHANG Y,LI C,JIA D,et al.Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding[J].International Journal of Machine Tools and Manufacture,2015,99:19-33.
    [185]傅玉灿,徐鸿钧.开槽砂轮缓磨时射流冲击强化换热的研究[J].航空学报,2001,22(3):222-226.FU Yucan,XU Hongjun.Study on enhancing heat transfer with jet impingement in creep feed deep grinding with slotted grinding wheel[J].Acta Aeronautics et Astronautics Sinica,2001,22(3):222-226.
    [186]张捷,张会改,廖映华,等.内冷式砂轮的流道设计及分析[J].机械设计与制造,2010(4):36-38.ZHANG Jie,ZHANG Huigai,LIAO Yinghua,et al.The design and analysis on flow of the cold-wheels[J].Machinery Design and Manufacture,2010(4):36-38.
    [187]MANDAL B,SINGH R,DAS S,et al.Improving grinding performance by controlling air flow around a grinding wheel[J].International Journal of Machine Tools and Manufacture,2011,51:670-676.
    [188]LI C H,DING Y C,LU B H,et al.Analytical and experimental investigation of the nickel based superalloy using cryogenic cooling grinding[J].Advanced Materials Research,2009,69-70:354-358.
    [189]CHEN J J,FU Y C,HE Q S,et al.Environmentally friendly machining with a revolving heat pipe grinding wheel[J].Applied Thermal Engineering,2016,107:719-727.
    [190]CHEN J J,FU Y C,LI Q L,et al.Investigation on induction brazing of revolving heat pipe grinding wheel[J].Materials and Design,2017,116:21-30.
    [191]傅玉灿,陈佳佳,赫青山,等.基于热管技术的磨削弧区强化换热研究[J].机械工程学报,2017,53(7):189-199.FU Yucan,CHEN Jiajia,HE Qingshan,et al.Investigation of enhancing heat transfer in the grinding contact zone based on heat pipe[J].Journal of Mechanical Engineering,2017,53(7):189-199.
    [192]DING W F,XU J H,CHEN Z Z,et al.Wear behavior and mechanism of single-layer brazed CBN abrasive wheels during creep-feed grinding cast nickel-based superalloy[J].International Journal of Advanced Manufacturing Technology,2010,51:541-550.
    [193]ZHANG Z Z,YAO P,ZHANG Z Y,et al.A novel technique for dressing metal-bonded diamond grinding wheel with abrasive waterjet and touch truing[J].International Journal of Advanced Manufacturing Technology,2017,93:3063-3073.
    [194]CAI R,ROWE W B,MORGAN M N.The effect of porosity on the grinding performance of vitrified CBNwheels[J].Key Engineering Materials,2003,238-239:295-300.
    [195]ZHANG Z G,ZHU Y M,LI Z H.Influence of different pore-forming mechanism on superfinish grinding tools[J].Advanced Materials Research,2012,418-420:2024-2031.
    [196]ZHAO B,YU T Y,DING W F,et al.Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites[J].Chinese Journal of Aeronautics,2017,30(6):2004-2015.
    [197]KONG L Y,OSTADHASSAN M,LI C X,et al.Pore characterization of 3D-printed gypsum rocks:Acomprehensive approach[J].Journal of Materials Science,2018,53:5063-5078.
    [198]ZHAO B,GAIN A K,DING W,et al.A review on metallic porous materials:pore formation,mechanical properties,and their applications[J].International Journal of Advanced Manufacturing Technology,2018,95(5-8):2641-2659.
    [199]CHEN Z Z,XU J H,DING W F,et al.Grinding performance evaluation of porous composite-bonded CBNwheels for Inconel 718[J].Chinese Journal of Aeronautics,2014,27(4):1022-1029.
    [200]DING W F.XU J H.CHEN Z Z,et al.Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents[J].International Journal of Advanced Manufacturing Technology,2013,67:1309-1315.
    [201]JIANG B,ZHAO N Q,SHI C S,et al.Processing of open cell aluminum foams with tailored porous morphology[J].Scripta Materialia,2005,53:781-785.
    [202]MAO J B,ZHANG F L,LIAO G C,et al.Effect of granulated sugar as pore former on the microstructure and mechanical properties of the vitrified bond cubic boron nitride grinding wheels[J].Materials and Design,2014,60:328-333.
    [203]LI Q L,REN H Z,LEI W N,et al.Investigation of temperature on the interfacial microstructure and performance of CBN grinding wheels by high-frequency induction brazing[J].International Journal of Advanced Manufacturing Technology,2018,95:2111-2118.
    [204]GHOSH A,CHATTOPADHYAY AK.Interfacial reaction and wetting behavior of active Ag-Cu filler alloys on surface of CBN grits and its influence on failure patterns of brazed joints[J].International Journal of Refractory Metals and Hard Materials,2017,68:96-103.
    [205]HUANG G Q,ZHANG M Q,GUO H,et al.The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing[J].International Journal of Abrasive Technology,2017,8(2):133-146.
    [206]WANG Y,DUAN Z Z,CHEN G,et al.Effects of brazing temperature on microstructure and properties of interface between CBN and Co-based active filler metals[J].Vacuum,2017,145:30-38.
    [207]SIMHAN D R,MUKHOPADHYAY P,GHOSH A.On segregation of Zr and wettaility of active Ag-Cu-Zr alloy on cubic boron nitride surface[J].Materials Letters,2017,207:183-186.
    [208]DING W F,XU J H,SHEN M,et al.Development and performance of monolayer brazed CBN grinding tools[J].International Journal of Advanced Manufacturing Technology,2007,34(5-6):491-495.
    [209]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制[D].南京:南京航空航天大学,2006DING Wenfeng.Research and development of monolayer brazed CBN wheels for high efficiency grinding nickel-based superalloy[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006.
    [210]PAL B,CHATTOPADHYAY A K,CHATTOPADHYAYA B.Development and performance evaluation of monolayer brazed CBN grinding wheel on bearing steel[J].International Journal of Advanced Manufacturing Technology,2010,48:935-944.
    [211]LU K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J].Nature Reviews,2016,1:1-13.
    [212]PEI H Q,WEN Z X,ZHANG Y M,et al.Oxidation behavior and mechanism of a Ni-based single crystal superalloy with singleα-Al2O3 film at 1000℃[J].Applied Surface Science,2017,411:124-135.
    [213]LIU X C,ZHANG H W,LU K.Formation of nanolaminated structure in nickel by means of surface mechanical grinding treatment[J].Acta Materialia,2015,96:24-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700