桂东北紫花坪岩体富Li淡色花岗岩岩石地球化学特征及其与铀成矿关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogeochemistry of Li-rich Zihuaping leuco-granites in northeastern Guangxi and the relation to uranium metallogenesis
  • 作者:何大芳 ; 邹明亮 ; 于玉帅 ; 欧阳平宁 ; 王前林 ; 李杰
  • 英文作者:HE Dafang;ZOU Mingliang;YU Yushuai;OUYANG Pingning;WANG Qianlin;LIJie;Oil and gas exploration team of Hunan Coalfield Geology Bureau;Changsha Uranium Geology Research institute,China National Nuclear Corporation;Wuhan Center of Chinese Geological Survey,China Geological Survey;
  • 关键词:越城岭岩体 ; 富Li淡色花岗岩 ; 结晶分异 ; 花岗岩成因 ; 铀成矿作用 ; 桂东北
  • 英文关键词:Yuechengling pluton;;Li-rich leucogranite;;fractional crystallization;;genesis of the granite;;uranium mineralization;;the northeast Guangxi
  • 中文刊名:DZZK
  • 英文刊名:Contributions to Geology and Mineral Resources Research
  • 机构:湖南省煤田地质局油气勘探队;核工业二三〇研究所;中国地质调查局武汉地质调查中心;
  • 出版日期:2018-09-15
  • 出版单位:地质找矿论丛
  • 年:2018
  • 期:v.33;No.131
  • 基金:国家重点研发计划“深地资源勘查开采”重点专项(编号:2016YFC0600205);; 中国核工业集团公司项目(编号:地LTD1602)联合资助
  • 语种:中文;
  • 页:DZZK201803002
  • 页数:11
  • CN:03
  • ISSN:12-1131/P
  • 分类号:21-31
摘要
锂、铀作为重要矿产资源,且在花岗岩中的富集部位存在交集,其成因问题长期备受关注。桂东北紫花坪岩体中的淡色花岗岩Li含量(质量分数)高达678.7×10~(-6)(中细粒二云母花岗岩和中细粒白云母花岗岩),具有富集Li元素的特征。通过对其岩石地球化学特征及与铀成矿关系研究表明:淡色花岗岩具有相对较高的Na__2O、Al__2O_3和F含量,以及较低的K__2O、FeO、MgO和CaO含量,属于过铝质花岗岩;以离子电位5.7为界,淡色花岗岩中的微量元素随Li含量的增加,呈现出高离子电位元素含量增加而低离子电位元素降低的趋势,相对富集Rb、Ta和Hf,具有低ΣREE及重稀土富集特征;岩体中元素富集分带从早到晚、自下而上依次为LREE→Y→HREE→U(Ⅳ)→Zr-Hf→Nb-Ta→Li,花岗岩中的晶质铀矿早于稀有金属形成;铀矿石中As、Ni等元素富集,见地开石及钾交代现象,表明铀成矿过程中经历了热流体作用;结合区域成矿资料及上述结论认为,紫花坪岩体中的淡色花岗岩为泥质源区重熔的产物,其形成与岩浆高程度的结晶分异作用有关,相对靠近重熔界面顶部;淡色中细粒二云母花岗岩为区内主要含铀花岗岩,经历了晚期热流体作用,深部存在铀成矿的可能。
        Lithium and uranium are the main mineral resources and their enrichment positions in granite are related with each other.Leuco granite in Zihuaping pluton is characterized by Li enrichment,678.7×10~(-6)(in medium-fine grained mica-muscovite granite)and 1 092.0×10~(-6)(in medium-fine grained muscovite granite).Study on relation between petrogeochemistry of the granite and Uranium metallogenesis shows that the leuco-granite is relatively higher in Na__2O、Al__2O_3 and F and relatively lower in K__2O、FeO、MgO and CaO and that they are peraluminous granites.Demarked by ionic potential value 5.7 trace elements get higher with increase of Li content in the granite,i.e.a tendency of increase of elements with high ion potential with decrease of elements with low ion potential.Elements.In addition Rb,Ta,Hf are relatively enriched and HREE concentration lower.The element concentration zoning in the granite is temporally(from early to late)and spatially(from top to bottom)LREE→HREE→U(IV)→(Zr,Hf)→(Nb,Ta)→Li.The uraninite was formed before rare metal minerals.see to the dickite formation and potassium replacement in uranium ore for enrichment of As,Ni and other elements which indicates that hydrothermal fluid incorporated in the U-ore-forming process.Combined with the regional metallogenic data it is considered that the Li-rich leucogranite in Zihuaping pluton are the products of the remelting of the muddy source region,and the formation is close to the top of the remelting interface and related to the high degree of crystallization of the magma.The medium-fine grained two mica granite is the main uranium-bearing granite in this region,which was exposed to late thermal fluid.U-prospecting is potential to depth.
引文
[1]Cuney M,Marignac C,Weisbrod A.The Beauvoir topaz-lepidolite albite granite(Massif Central,France);the isseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J].Economic Geology,1992,87(7):1766-1794.
    [2]Breiter K,Muller A,Leichmann J,et al.Textural and chemical evolution of a fractionated granitic system:the podlesi stock,Czech republic[J].Lithos,2005,80:323-345.
    [3]Veksler I V.Liquid immiscibility and its role at the magmatichydrothermal transition:a summary of experimental studies[J].Chemical Geology,2004,210:7-31.
    [4]Veksler I V,Dorfman A M,Borisov A A,et al.Liquid immiscibility and the evolution of basaltic magma[J].Journal of petrology,2007,48(11):2187-2210.
    [5]王联魁,王慧芬,黄智龙.Li-F花岗岩液态分离的微量元素地球化学标志[J].岩石学报,2000,16(2):145-152.
    [6]朱金初,饶冰,熊小林,等.富锂氟含稀有矿化花岗质岩石的对比和成因思考[J].地球化学,2002,31(2):141-152.
    [7]李福春,朱金初,饶冰,等.富锂氟花岗岩成因:高温高压实验证据[J].中国科学(D辑),2003,33(9):841-851.
    [8]李福春,朱金初,金章东.华南富锂氟含稀有金属花岗岩的成因分析[J].矿床地质,2000,19(4):376-385.
    [9]张德会,张文淮,许国建.富F熔体—溶液体系流体地球化学及其成矿效应—研究现状及存在问题[J].地学前缘,2004,11(2):479-490.
    [10]李建康,张德会,王登红.富氟花岗岩浆液体不混溶作用及其成岩成矿效应[J].地质论评,2008,54(2):175-183.
    [11]陈国能.成矿元素的离子结构及其在花岗岩成矿过程中的行为[J].地学前缘,2011,18(1):89-94.
    [12]Vigneresse J L.Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation[J].Chem.Geol.,2009,263:69-81.
    [13]赵博,张德会,张荣臻,等.富F熔体—溶液流体体系的地球化学性状及成矿效应研究进展[J].地质科学,2015,50(1):222-240.
    [14]邹明亮,方适宜,徐浩,等.诸广山岩体黄峰岭地区产铀花岗岩的岩浆液态不混溶成因[J].地质科学,2016,51(3):850-871.
    [15]陈毓川,毛景文.桂北地区矿床成矿系列和成矿历史演化轨迹[M].南宁:广西科学技术出版社,1995:1-433.
    [16]张桂林,梁金城,冯佐海,等.越城岭花岗岩体西侧滑脱型韧性剪切带的发现及其形成的构造体制[J].大地构造与成矿学,2002,26(2):131-137.
    [17]孙涛,王志成,陈培荣,等.南岭地区晚中生代北带花岗岩研究—苗儿山-越城岭岩体[C]//周新民(主编).南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,2007:504-520.
    [18]柏道远,钟响,贾朋远,等.南岭西段加里东期越城岭岩体锆石SHRIMP U-Pb年龄、地质地球化学特征及其形成构造背景[J].地球化学,2015,44(1):27-42.
    [19]Miller C F,Mcdowell S M,Mapes R W.Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance[J].Geology,2003,31(6):529-532.
    [20]邱家骧.岩浆岩石学[M].北京:地质出版社,1985:190-199.
    [21]Irber W.The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J].Geochimica et Cosmochimica Acta,1999,63(3/4):489-508.
    [22]Debon F,Le Fort P.A chemical-mineralogical classification of common plutonic rocks and associations[J].Trans R Soc Edinburgh:Earth Sci,1983,73:135-149.
    [23]Sylvester P J.Post-collisional strongly peraluminous granites[J].lithos,1998,45:29-44.
    [24]谢晓华,陈卫锋,赵葵东,等.桂东北豆乍山花岗岩年代学与地球化学特征[J].岩石学报,2008,24(6):1302-1312.
    [25]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:7-9.
    [26]赵伦山,张本仁.地球化学[M].北京:地质出版社,1988:62-66.
    [27]El Bouseily A M,El Sokkary A A.The relation between Rb,Ba and Sr in granitic rocksJ].Chem Geol,1975,16:207-219.
    [28]Yoshio T,Hidekazu Y,Nana S.W-and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit,central Japan[J].Chemical Geology,2002,184:311-335.
    [29]Henderson P.Rare earth element geochemistry[M].Elsev Sci Pub B V,1984:1-510.
    [30]阮青锋,陆琦,邱志惠,等.氟铁云母的晶体结构分析[J].矿物岩石,2009,29(3):1-8.
    [31]Zotov A,Mukhametgaleev A,Schott J.An experimental study of kaolinite and dickite relative stability at 150℃—300℃and the thermodynamic properties of dickite[J].American Mineralogist,1998,83:516-524.
    [32]Shannon R D.Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J].Acta Cryst,1976,32:751-767.
    [33]林小明,陈国能.从离子半径变化看元素地球化学场中的成矿分带[J].中山大学学报(自然科学版),2002,41(5):91-94.
    [34]李福春,朱金初,饶冰,等.富锂氟花岗岩中存在岩浆成因铁/锂白云母的试验证据[J].地球化学,2003b,32(1):75-80.
    [35]Shearer C K,Papike J J.Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system,Black Hills,South Dakota[J].Canadian Mineralogist,1992,30:785-890.
    [36]毛建仁,厉子龙,叶海敏.华南中生代构造—岩浆活动研究:现状与前景[J].中国科学:地球科学,2014,44:2593-2617.
    [37]戎嘉树,孙西田,王明太.花岗岩晶质铀矿的产出概况及其富集因素的初步研究[J].铀矿地质,1986,2(5):272-279.
    [38]冯明月,何德宝.华南富铀花岗岩和产铀花岗岩特征[J].铀矿地质,2012,28(4):199-207.
    [39]Sen J,Ranganath N,Rathaiah Y V,et al.Petrography and geochemistry of uranium mineralized Precambrian graniticpegmatitic rocks of Mawlait,West Khasi Hills District,Meghalaya[J].Journal Geological society of India,2009,74:639-645.
    [40]邹明亮,舒孝敬,范立亭,等.桂北摩天岭含铀花岗岩体岩石地球化学特征[J].矿物岩石地球化学通报,2011,30(4):415-422.
    [41]胡瑞忠,毕献武,苏文超,等.华南白垩-第三纪地壳拉张与铀成矿的关系[J].地学前缘,2004,11(1):153-160.
    [42]方适宜,范立亭,舒孝敬,等.苗儿山大型铀矿集区成矿潜力分析与勘查评价[C]//中国核学会.中国核科学技术进展报告·第一卷:中国核学会2009年学术年会论文集.北京:原子能出版社,2009:266-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700