牛胎儿骨骼肌来源成肌细胞分化相关microRNA的筛查与鉴定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of microRNAs Involved in Myogenic Differentiation of Bovine Fetal Skeletal Muscle Derived Myoblasts
  • 作者:邢义珅 ; 胡鑫 ; 任玲 ; 王亚慧 ; 徐凌洋 ; 李俊雅 ; 张路培
  • 英文作者:XING Yi-shen;HU Xin;REN Ling;WANG Ya-hui;XU Ling-yang;LI Jun-ya;ZHANG Lu-pei;Institute of Animal Science,Chinese Academy of Agricultural Sciences;
  • 关键词: ; 胎儿骨骼肌 ; miRNA ; 成肌细胞分化
  • 英文关键词:bovine;;fetal skeletal muscle;;miRNA;;myoblast differentiation
  • 中文刊名:XMSY
  • 英文刊名:Chinese Journal of Animal and Veterinary Sciences
  • 机构:中国农业科学院北京畜牧兽医研究所;
  • 出版日期:2018-06-15
  • 出版单位:畜牧兽医学报
  • 年:2018
  • 期:v.49
  • 基金:国家自然科学基金(31672384);; 中国农业科学院科技创新工程(ASTIP-IAS03)
  • 语种:中文;
  • 页:XMSY201806005
  • 页数:11
  • CN:06
  • ISSN:11-1985/S
  • 分类号:41-51
摘要
旨在发掘牛胎儿骨骼肌来源的成肌细胞分化过程中差异表达的miRNA,为进一步研究牛胎儿期成肌细胞分化的分子机理提供理论基础。本研究体外培养3头4月龄的牛胎儿骨骼肌来源的成肌细胞,运用高通量测序技术对成肌细胞分化起始和终末两个不同时期进行miRNA测序,并对测序结果进行生物信息学分析,鉴定差异表达的miRNA。随机选取差异表达miRNA,进行荧光定量PCR验证。结果表明,本研究从6个测序文库中共鉴定出已知miRNA 619个,其中差异表达miRNA 150个。差异表达miRNA中bta-miR-199a-5p等多个miRNA已经被证实与肌肉发育相关。通过靶基因预测富集到MAPK等多个与肌肉分化相关的通路。随机选取其中的8个miRNA进行荧光定量PCR验证,定量结果与测序结果完全一致。本研究鉴定出了150个与牛胎儿骨骼肌来源的成肌细胞分化相关的差异表达miRNAs。本研究结果将为研究miRNA调控牛胎儿骨骼肌发育提供科学依据。
        This study aimed to identify differentially expressed miRNAs in myogenic differentiation of bovine fetal skeletal muscle derived myoblasts,which would provide important insight for understanding the mechanism of myoblast differentiation at bovine fetal stage.Myoblasts were isolated and cultured from skeletal muscle of 3 bovine fetal on 4 months old,and then induced myogenic differentiation in vitro.miRNAs of myoblast at the initial and terminal stage of myoblast differentiation were sequenced using high throughput sequencing technology.The sequencing data was analyzed to identify the differentially expressed miRNAs.Differentially expressed miRNAs were randomly selected to validate the sequencing accuracy using quantitative RT-PCR.The results revealed 619 miRNAs in 6 libraries,and 150 miRNAs were differentially expressed.Among them,several miRNAs were related to muscle development such as bta-miR-199 a-5 p.The target genes of differentially expressed miRNAs were predicted and enriched to pathways related to the muscle development such as MAPK pathway.The expression of 8 randomly selected miRNAs were quantified by real-time quantitative PCR for further validation,and their results were consistent with those of sequencing analyses.The study identified 150 differentially expressed miRNAs inthe differentiation of bovine fetal muscle derived myoblasts.Our findings will provide valuable insights for further exploring the regulation roles of miRNAs in the development of bovine fetal skeletal muscle.
引文
[1]LEE E A,KIM J M,LIM K S,et al.Effects of variation in porcine MYOD1gene on muscle fiber characteristics,lean meat production,and meat quality traits[J].Meat Sci,2012,92(1):36-43.
    [2]KARUNARATNE J F,ASHTON C J,STICKLAND N C.Fetal programming of fat and collagen in porcine skeletal muscles[J].J Anat,2005,207(6):763-768.
    [3]BUCKINGHAM M,RIGBY P W J.Gene regulatory networks and transcriptional mechanisms that control myogenesis[J].Dev Cell,2014,28(3):225-238.
    [4]CHEN J F,MANDEL E M,THOMSON J M,et al.The role of microRNA-1and microRNA-133in skeletal muscle proliferation and differentiation[J].Nat Genet,2006,38(2):228-233.
    [5]BARTEL D P.microRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
    [6]CARTHEW R W,SONTHEIMER E J.Origins and mechanisms of miRNAs and siRNAs[J].Cell,2009,136(4):642-655.
    [7]DALMAY T.Mechanism of miRNA-mediated repression of mRNA translation[J].Essays Biochem,2013,54:29-38.
    [8]ZHOU H B,XIAO J,WU N,et al.microRNA-223Regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPβ[J].Cell Rep,2015,13(6):1149-1160.
    [9]ALVAREZ-GARCIA I,MISKA E A.microRNA functions in animal development and human disease[J].Development,2005,132(21):4653-4662.
    [10]PARK J K,LIU X,STRAUSS T J,et al.The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells[J].Curr Biol,2007,17(6):533-538.
    [11]GOEDEKE L,WAGSCHAL A,FERNANDEZ-HERNANDO C,et al.miRNA regulation of LDL-cholesterol metabolism[J].Biochim Biophys Acta,2016,1861(12):2047-2052.
    [12]PIPAN V,ZORC M,KUNEJ T.microRNA polymorphisms in cancer:a literature analysis[J].Cancers(Basel),2015,7(3):1806-1814.
    [13]GE Y J,CHEN J.microRNAs in skeletal myogenesis[J].Cell Cycle,2011,10(3):441-448.
    [14]CRIST C G,MONTARRAS D,PALLAFACCHINA G,et al.Muscle stem cell behavior is modified by microRNA-27regulation of Pax3expression[J].Proc Natl Acad Sci USA,2009,106(32):13383-13387.
    [15]GAMBARDELLA S,RINALDI F,LEPORE S M,et al.Overexpression of microRNA-206in the skeletal muscle from myotonic dystrophy type 1patients[J].J Transl Med,2010,8:48.
    [16]MCCARTHY J J.microRNA-206:the skeletal muscle-specific myomiR[J].Biochim Biophys Acta,2008,1779(11):682-691.
    [17]GE Y J,SUN Y T,CHEN J.IGF-II is regulated by microRNA-125bin skeletal myogenesis[J].J Cell Biol,2011,192(1):69-81.
    [18]SUN J J,LI M J,LI Z J.et al.Identification and profiling of conserved and novel microRNAs from Chinese Qinchuan bovine longissimus thoracis[J].BMC Genomics,2013,14:42.
    [19]MOTAMENY S,WOLTERS S,NURNBERG P,et al.Next generation sequencing of miRNAs-strategies,resources and methods[J].Genes(Basel),2010,1(1):70-84.
    [20]DE NIGRIS F.Epigenetic regulators:polycomb-miRNA circuits in cancer[J].Biochim Biophys Acta,2016,1859(5):697-704.
    [21]MIRETTI S,MARTIGNANI E,TAULLI R,et al.Differential expression of microRNA-206in skeletal muscle of female Piedmontese and Friesian cattle[J].Vet J,2011,190(3):412-413.
    [22]罗艳,张群,梁宇君,等.动物中microRNA的保守性和进化历程[J].中国科学:生命科学,2012,42(2):96-106.LUO Y,ZHANG Q,LIANG Y J,et al.Conservation and evolution of microRNAs in animals[J].Scientia Sinica Vitae,2012,42(2):96-106.(in Chinese)
    [23]HASHEMI GHEINANI A,BURKHARD F C,REHRAUER H,et al.microRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2signaling pathway[J].J Biol Chem,2015,290(11):7067-7086.
    [24]ZUO J J,WU F,LIU Y H,et al.microRNA transcriptome profile analysis in porcine muscle and the effect of miR-143on the MYH7gene and protein[J].PLoS One,2015,10(4):e0124873.
    [25]DEY B K,GAGAN J,YAN Z,et al.miR-26ais required for skeletal muscle differentiation and regeneration in mice[J].Genes Dev,2012,26(19):2180-2191.
    [26]ZHANG J,YING Z Z,TANG Z L,et al.microRNA-148apromotes myogenic differentiation by targeting the ROCK1gene[J].J Biol Chem,2012,287(25):21093-21101.
    [27]KEREN A,TAMIR Y,BENGAL E.The p38 MAPK signaling pathway:a major regulator of skeletal muscle development[J].Mol Cell Endocrinol,2006,252(1-2):224-230.
    [28]TU M K,LEVIN J B,HAMILTON A M,et al.Calcium signaling in skeletal muscle development,maintenance and regeneration[J].Cell Calcium,2016,59(2-3):91-97.
    [29]CHEN S E,JIN B W,LI Y P.TNF-αregulates myogenesis and muscle regeneration by activating p38MAPK[J].Am J Physiol Cell Physiol,2007,292(5):C1660-C1671.
    [30]MEYER S U,THIRION C,POLESSKAYA A,et al.TNF-αand IGF1 modify the microRNA signature in skeletal muscle cell differentiation[J].Cell Commun Signal,2015,13:4.
    [31]HITACHI K,TSUCHIDA K.Role of microRNAs in skeletal muscle hypertrophy[J].Front Physiol,2014,4:408.
    [32]YUE Z C,ZHANG Y H,XIE J,et al.Transient receptor potential(TRP)channels and cardiac fibrosis[J].Curr Top Med Chem,2013,13(3):270-282.
    [33]WATANABE H,IINO K,OHBA T,et al.Possible involvement of TRP channels in cardiac hypertrophy and arrhythmia[J].Curr Top Med Chem,2013,13(3):283-294.
    [34]MORABITO C,STEIMBERG N,ROVETTA F,et al.Extremely low-frequency electromagnetic fields affect myogenic processes in C2C12 myoblasts:role of gap-junction-mediated intercellular communication[J].Biomed Res Int,2017,2017:2460215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700