Bi_2O_3纳米纤维的合成及改性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on Synthesis and Modification of Bi_2O_3 Nanofibers
  • 作者:孟庆明 ; 殷志全 ; 鲁奇林
  • 英文作者:MENG Qing-ming;YIN Zhi-quan;LU Qi-lin;College of Chemistry and Chemical Engineering,Bohai University;
  • 关键词:氧化铋 ; 静电纺丝法 ; 掺杂改性
  • 英文关键词:bismuth oxide;;electrospinning;;doping modification
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:渤海大学化学化工学院;
  • 出版日期:2019-05-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.272
  • 基金:渤海大学博士启动基金(0517bs029)
  • 语种:中文;
  • 页:GSYT201905018
  • 页数:6
  • CN:05
  • ISSN:11-5440/TQ
  • 分类号:119-123+130
摘要
氧化铋(Bi_2O_3)纳米纤维是一种新型的无机功能半导体材料,近年来在光催化降解废水、光敏元件、生物传感器、防辐射材料等领域中彰显出巨大潜能。阐述了静电纺丝法制备Bi_2O_3纳米纤维的形成机理及其主要影响因素。针对单一Bi_2O_3纳米纤维光催化活性不高和抗腐蚀性较差的不足,详细综述了通过掺杂改性及复合半导体改性对Bi_2O_3纳米纤维的改性研究进展,指出改性后的Bi_2O_3纳米纤维具有更广阔的应用前景。在此基础上,提出了当前Bi_2O_3纳米纤维研究工作中存在的主要问题,并对其今后的发展进行了展望。
        As a novel inorganic functional semiconductor material,bismuth oxide( Bi_2O_3) nanofibers exhibit potential application in the field of photocatalytic degradation of wastewater, photosensitive element,biosensor and radiation-proof material in recent years. The formation mechanism and main influencing factors of Bi_2O_3 nanofibers prepared by electrospinning were described. In order to overcome the poor photocatalytic activity and corrosion resistance of single Bi_2O_3 nanofibers,the progress on the modification of Bi_2O_3 nanofibers by doping and compound semiconductor was summarized in detail,and the modified Bi_2O_3 nanofibers unfold broader application prospects was discussed. Furthermore,the main problems existing in the current research work of Bi_2O_3 nanofibers were proposed and the further research prospects were presented.
引文
[1]Matysiaka W,Tańskia T,Jarkaa P,et al.Comparison of optical properties of PAN/Ti O2,PAN/Bi2O3,and PAN/SbSI nanofibers[J].Optical Materials,2018,83:145-151.
    [2]Brezesinski K,Ostermann R,Hartmann P,et al.Exceptional photocatalytic activity of ordered mesoporousβ-Bi2O3thin films and electrospun nanofiber mats[J].Chemistry of Materials,2010,22(10):3079-3085.
    [3]Gopalsamy K,Xu Z,Zheng B N,et al.Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors[J].Nanoscale,2014,15(6):8595-8600.
    [4]Hou J G,Yang C,Wang Z,et al.In situ synthesis ofα-βphase heterojunction on Bi2O3nanowires with exceptional visible-light photocatalytic performance[J].Applied Catalysis B:Environmental,2013,142-143:504-511.
    [5]Jiang S,Lv L P,Landfester K,et al.Nanocontainers in and onto nanofibers[J].Accounts of Chemical Research,2016,499(5):816-823.
    [6]Chen S S,Li S Z,Xiong L B,et al.In-situ growth of ZnIn2S4decorated on electrospun Ti O2nanofibers with enhanced visible-light photocatalytic activity[J].Chemical Physics Letters,2018,706:68-75.
    [7]Zhu J,Shao C L,Li X H,et al.Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity[J].Materials Chemistry and Physics,2018,214:507-515.
    [8]Wang C H,Shao C L,Wang L J,et al.Electrospinning preparation,characterization and photocatalytic properties of Bi2O3nanofibers[J].Journal of Colloid and Interface Science,2009,333(1):242-248.
    [9]Ginestra P,Ceretti E,Fiorentino A,et al.Electrospinning of poly-caprolactone for scaffold manufacturing:experimental investigation on the process parameters influence[J].Procedia CIRP,2016,49:8-13.
    [10]Babu V J,Bhavatharini R S R,Ramakrishna S,et al.Bi2O3and BiOCl electrospun nanosheets and morphology dependent photocatalytic properties[J].RSC Advances,2014,57(4):29957-29963.
    [11]Mohamed A,Geoffrey R M,Fred J D,et al.Sustainable electrospinning of nanoscale fibre[J].Procedia Manufacturing,2017,12:66-78.
    [12]Jiang S,He W,Katharina L,et al.The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed[J].Polymer,2017,127:101-105.
    [13]Dobrovolskaya I P,Yudin V E,Popryadukhin P V,et al.Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers[J].Carbohydrate Polymers,2018,194:260-266.
    [14]Han Y,Rheem Y,Lee K Y,et al.Synthesis and characterization of orthorhombic-MoO3nanofibers with controlled morphology and diameter[J].Journal of Industrial and Engineering Chemistry,2018,65:231-238.
    [15]Stepanyan R,Subbotin A V,Cuperus L,et al.Nanofiber diameter in electrospinning of polymer solutions:model and experiment[J].Polymer,2016,97:428-439.
    [16]Li Y J,Yang F,Yu Y.Enhanced photocatalytic activity ofα-Bi2O3with high electron-hole mobility by codoping approach:a first-principles study[J].Applied Surface Science,2015,358:449-456.
    [17]Singh S,Sharma R.Bi2O3/Ni-Bi2O3system obtained via Ni-doping for enhanced PEC and photocatalytic activity supported by DFT and experimental study[J].Solar Energy Materials and Solar Cells,2018,186:208-216.
    [18]Chang F,Xu Q,Wu F Y,et al.In situ construction,photocatalytic performance,and mechanism speculation of plasmonic binary Bi/β-Bi2O3hybrids[J].Materials Science in Semiconductor Processing,2018,80:1-8.
    [19]Wang G W,Huang Y Y,Li G S,et al.Preparation of a novel sonocatalyst,Au/Ni Ga2O4-Au-Bi2O3nanocomposite,and application in sonocatalytic degradation of organic pollutants[J].Ultrasonics Sonochemistry,2017,38:335-346.
    [20]Schoolaert E,Ryckx P,Geltmeyer J,et al.Waterborne electrospinning of poly(N-isopropylacrylamide)by control of environmental parameters[J].ACS Applied Materials and Interfaces,2017,9(28):24100-24110.
    [21]Sharma R,Khanuja M,Sharma S N,et al.Reduced band gap&charge recombination rate in Se dopedα-Bi2O3leads to enhanced photoelectrochemical and photocatalytic performance:theoretical&experimental insight[J].International Journal of Hydrogen Energy,2017,42(32):20638-20648.
    [22]Liang Z T,Cao Y,Li Y Z,et al.Solid-state chemical synthesis of rod-like fluorine-dopedβ-Bi2O3and their enhanced photocatalytic property under visible light[J].Applied Surface Science,2016,390:78-85.
    [23]Dong Y C,Kapilashrami M,Zhang Y F,et al.Morphology change and band gap narrowing of hierarchical Ti O2nanostructures induced by fluorine doping[J].Cryst.Eng.Comm.,2013,15(48):10657-10664.
    [24]Wang Y,Chen Y C,Song X M,et al.Electrical properties of fluorine-doped Zn O nanowires formed by biased plasma treatment[J].Physica E:Low-dimensional Systems and Nanostructures,2018,99:254-260.
    [25]Dai G P,Liu S Q,Liang Y.A simple preparation of carbon doped porous Bi2O3with enhanced visible-light photocatalytic activity[J].Journal of Alloys and Compounds,2014,608:44-48.
    [26]Hao Q,Wang R T,Lu H J,et al.One-pot synthesis of C/Bi/Bi2O3composite with enhanced photocatalytic activity[J].Applied Catalysis B:Environmental,2017,219:63-72.
    [27]Sajjad S,Leghari S A K,Zhang J L.Nonstoichiometric Bi2O3:efficient visible light photocatalyst[J].RSC Advances,2013,3(5):1363-1367.
    [28]Zhang Z H,Hedhili M N,Zhu H B,et al.Electrochemical reduction induced self-doping of Ti3+for efficient water splitting performance on Ti O2based photoelectrodes[J].Physical Chemistry Chemical Physics,2013,15(37):15637-15644.
    [29]Zhou C,Zhao Y F,Shang L,et al.Facile preparation of black Nb4+self-doped K4Nb6O17microspheres with high solar absorption and enhanced photocatalytic activity[J].Chemical Communications,2014,50(67):9554-9556.
    [30]韩成,雷永鹏,王应德.纳米异质结光催化材料制取太阳能燃料研究进展[J].无机材料学报,2015,11(30):1121-1130.
    [31]Pei C C,Leung W W F.Photocatalytic oxidation of nitrogen monoxide and o-xylene by Ti O2/ZnO/Bi2O3nanofibers:optimization,kinetic modeling and mechanisms[J].Applied Catalysis B:Environmental,2015,174-175:515-525.
    [32]Pei C C,Lo K K S,Leung W W F.Titanium-zinc-bismuth oxides-graphene composite nanofibers as high-performance photocatalyst for gas purification[J].Separation and Purification Technology,2017,184:205-212.
    [33]Liu X F,Lai Y K,Huang J Y,et al.Hierarchical SiO2@Bi2O3core/shell electrospun fibers for infrared stealth camouflage[J].Journal of Materials Chemistry C,2015,3(2):345-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700