高压压裂液对JY-50压裂弯管冲蚀行为影响的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation for Erosion Behavior of High-pressure Fracturing Fluids on JY-50 Fracturing Bend Pipe
  • 作者:易先中 ; 彭灼 ; 周元华 ; 成芳 ; 刘军辉 ; 盛治新 ; 殷光品
  • 英文作者:YI Xian-zhong;PENG Zhuo;ZHOU Yuan-hua;CHENG Fang;LIU Jun-hui;SHENG Zhi-xin;YIN Guang-pin;School of Mechanical Engineering, Yangtze University;Institute of Geothermal Resources Development, Yangtze University;Karamay Chuangye Co., Ltd;Qingdao Jinjiangyuan Industrial Equipment Co., Ltd;Hubei Jiaye Petroleum Machinery Co., Ltd;
  • 关键词:高压压裂液 ; 冲蚀行为 ; 弯管 ; 冲蚀速率 ; 磨损 ; 数值模拟
  • 英文关键词:high pressure fracturing fluid;;erosion behavior;;bend pipe;;erosion rate;;wear;;numerical simulation
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:长江大学机械工程学院;长江大学地热资源开发研究所;克拉玛依创业有限公司;青岛金江源工业装备有限公司;湖北佳业石油机械股份有限公司;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家科技重大专项(2016ZX05022006-004,2017ZX05009-003);; 湖北省技术创新专项(2016ACA181);; NSFC-石油化工联合基金(U1762214,U1262108)~~
  • 语种:中文;
  • 页:BMJS201902022
  • 页数:8
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:154-161
摘要
目的研究在水力压裂作业中,高压压裂液对JY-50压裂弯管冲蚀磨损的影响规律及其主要影响因素。方法基于液-固两相流理论、FLUENT冲蚀模型,为消除误差,应用FLUENT3次重复性分析并取平均值,得到支撑剂密度、粒径、质量浓度、压裂液流速的变化对弯管冲蚀行为的影响。结果压裂弯管的易冲蚀区域为弯管段靠近出口的内壁面外侧区域和接近弯管出口的直管区域。随着支撑剂密度和粒径的增大,最大冲蚀速率均增大,支撑剂密度从2500 kg/m3增大到3500 kg/m3时,最大冲蚀速率增长了0.69倍,粒径从0.074 mm增大到0.54 mm时,最大冲蚀速率增长了1.45倍,但二者对平均冲蚀速率数值影响变化不大。支撑剂质量浓度的增大,导致冲蚀速率呈近似线性增大,从40 kg/m3增大到210 kg/m3时,最大冲蚀速率增长了2.3倍,平均冲蚀速率增长了1.526倍。流速从5 m/s增大到25 m/s时,最大冲蚀速率平均增长了34.30倍,平均冲蚀速率也增长了34.85倍。结论对JY-50压裂弯管冲蚀行为及影响进行了数值模拟,获得了压裂液的参数变化对压裂弯管的冲蚀影响规律,综合最大冲蚀速率和平均冲蚀速率数值及其增长倍数分析,压裂液流速是冲蚀速率增长的主要因素,对弯管冲蚀磨损影响显著。
        The work aims to study the influence laws and main influence factors of high pressure fracturing fluid to JY-50 fracturing bend pipe in the process of hydraulic fracturing operation. Based on the liquid-solid two-phase flow theory andFLUENT erosion model, the FLUENT software was used for 3 times to repeat analysis and take the average to eliminate the er-ror and obtain the effects of proppant density, particle size, mass concentration and change of fluid velocity on bend pipe erosionbehavior. The easy erosion area of fracturing bend pipe was the curved section near the exit of the inner wall of the lateral areaand close to the straight tube of bend pipe export area. As proppant density and particle size increased, the maximum erosionrate increased. When the density of proppant increased from 2500 kg/m3 to 3500 kg/m3, the maximum erosion rate increased by0.69 times. When diameter changed from 0.074 to 0.54 mm, the maximum erosion rate increased by 1.45 times, but the impacton the average erosion rate value was not obvious. The increasing proppant concentration led to the approximately linear in-crease of erosion rate. When the proppant concentration changed from 40 kg/m3 to 210 kg/m3, the maximum erosion rate in-creased by 2.3 times and the average erosion rate increased by 1.526 times. When velocity ranged from 5 m/s to 25 m/s, themaximum erosion rate and the average erosion rate increased by 34.30 and 34.85 times, respectively. Through the numericalsimulation for erosion behavior and effects on JY-50 pressure fracturing pipe, the erosion laws of pressure fracturing fluid pa-rameters on pressure fracturing bend are obtained. Combined with the maximum erosion rate, average erosion numerical valueand growth times analysis, fracturing fluid flow rate is the main factor for erosion rate growth and significantly affects the ero-sion wear of bend.
引文
[1]杨国圣,张玉清.涪陵页岩气工程技术实践与认识[M].北京:中国石化出版社,2015:283.YANG Guo-sheng,ZHANG Yu-qing.Practice and understanding of shale gas engineering technology in fuling[M].Beijing:Chinese Sinopec Press,2015:283.
    [2]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:440-442.SUN Jia-shu.Wear of metals[M].Beijing:Metallurgical Industry Press,1992:440-442.
    [3]黄桢,李鹭光,胡桂川.天然气井油管柱疲劳寿命预测[M].重庆:重庆大学出版社,2012:81-82.HUANG Zhen,LI Lu-guang,HU Gui-chuan.Gas well tubing string fatigue life prediction[M].Chongqing:Chongqing University Press,2012:81-82.
    [4]付林.油煤浆输送管道弯头部位冲击磨损预测与壁厚监测[D].天津:河北工业大学.2009.FU Lin.Impact wear prediction and wall thickness monitoring of the elbow region in the oil-coal slurry pipeline[D].Tianjing:Hebei University of Technology,2009.
    [5]ALLEN C,BALL A.A review of the performance of engineering materials under prevalent tribological and wear situations in south africa industries[J].Tribology international,1996,29(3):105-116.
    [6]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312.DONG Gang,ZHANG Jiu-yuan.Developments of reserch on the solid particle erosion of materials[J].Journal of materials science&engineering,2003,21(2):307-312.
    [7]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-15.MA Ying,REN Jun,LI Yuan-dong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-15.
    [8]陈思.潜油电泵叶轮的冲蚀磨损研究[D].大庆:东北石油大学.2016.CHEN Si.Research on erosion and protect in the electric submersible[D].Daqing:Northeast Petroleum University.2016.
    [9]SY/T 6270-2012石油钻采高压管汇的使用?维护?维修与检测[S].SY/T 6270-2012,Operation,maintenance,repair and inspection of high pressure manifolds for drilling and production operation[S].
    [10]王郭雨薇,敬加强,梁全胜,等.输气管道砂冲蚀的模拟实验[J].材料科学与工程学报,2016,34(2):310-315.WANG Guo-yu-wei,JING Jia-qiang,LIANG Quansheng,et al.Experimental simulation research of sand erosion in gas pipeline[J].Journal of materials science&engineering,2016,34(2):310-315.
    [11]吕东莉,练章华,张涛.基于有限元的20#钢冲蚀磨损行为模拟[J].表面技术,2018,47(6):31-37.LYU Dong-li,LIAN Zhang-hua,ZHANG Tao.Finite element-based simulation on erosive wear behaviour of20#steel[J].Surface technology,2018,47(6):31-37.
    [12]冯进,张慢来,冯仲.带粒液流中圆形弯管的冲蚀模型研究[J].长江大学学报(自科版),2008,5(3):74-80.FENG Jin,ZHANG Man-lai,FENG Zhong.Research on erosion damage models for round-section elbow in liquidparticle flows[J].Journal of Yangtze University(Natural science edition),2008,5(3):74-80.
    [13]陈铮,路伟,赵志顶,等.基于Fluent的异径偏心弯管环烷酸冲蚀分析[J].腐蚀与防护,2016,37(4):335-339.CHEN Zheng,LU Wei,ZHAO Zhi-ding,et al.Naphthenic acid erosion-corrosion analysis of eccentric reducing elbow pipe based on Fluent[J].Corrosion&protection,2016,37(4):335-339.
    [14]梁光川,聂畅,刘奇,等.基于FLUENT的输油管道弯头冲蚀分析[J].腐蚀与防护,2013,34(9):822-830.LIANG Guang-chuan,NIE Chang,LIU Qi,et al.Erosioncorrosion analysis of oil pipeline elbow based on FLUENT[J].Corrosion&protection,2013,34(9):822-830.
    [15]DESALE G R,GANDHI B K,JAIN S C.Particle size effects on the slurry erosion of aluminium alloy(AA6063)[J].Wear,2009,266(11):1066-1071.
    [16]周兆明,练章华,万夫.高压管汇冲蚀磨损的多相流仿真[J].计算机辅助工程,2013,22(5):101-104.ZHOU Zhao-ming,LIAN Zhang-hua,WAN Fu.Multiphase flow simulation on erosion of high pressure manifold[J].Computer aided engineering,2013,22(5):101-104.
    [17]温正.FLUENT流体计算应用教程(第二版)[M].北京:清华大学出版社,2013:77-78.WEN Zheng.FLUENT Course of application of fluid calculation(the Second edition)[M].Beijing:Tsinghua University Press,2013:77-78.
    [18]ZHANG Y,REUTERFORS E P,MCLAURY B S,et al.Comparison and measured particle velocities and erosion in water and air flows[J].Wear,2007,263(1):330-338.
    [19]FORDER A,THEW M,HARRISON D.A numerical investigation of solid particle erosion experienced within oilfield control valves[J].Wear,1998,216(2):184-193.
    [20]AHLERT K R.Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018stell[D].Tulsa:The University of Tulsa,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700