基于塑性铰模型的双肢薄壁墩抗震性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the seismic behavior of double-limb thin-walled piers based on plastic hinge model
  • 作者:陈爱军 ; 彭容新 ; 贺国京 ; 王解军
  • 英文作者:CHEN Aijun;PENG Rongxin;HE Guojing;WANG Jiejun;School of Civil Engineering,Central South University of Forestry and Technology;
  • 关键词:大跨连续刚构桥 ; 双肢薄壁墩 ; 低周反复荷载试验 ; 抗推性能 ; 延性性能 ; 塑性铰模型
  • 英文关键词:large span continuous rigid frame bridge;;double-limb thin-walled pier;;low cyclic loading test;;push performance;;ductility performance;;plastic hinge model
  • 中文刊名:ZRZH
  • 英文刊名:Journal of Natural Disasters
  • 机构:中南林业科技大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金项目(51178473)~~
  • 语种:中文;
  • 页:ZRZH201903015
  • 页数:11
  • CN:03
  • ISSN:23-1324/X
  • 分类号:133-143
摘要
为研究基于塑性铰模型的双肢薄壁墩的抗震性能,结合4种塑性铰模型、基底纵筋滑移模型及双肢薄壁墩简化计算模型,计算其在低周反复荷载作用下的墩顶变形及抗推承载力。建立空间非线性模型,计算分析该桥墩在低周反复荷载作用下的力学性能及破坏形态。同时,制作双肢薄壁墩的缩尺模型,通过拟静力试验研究其破坏形态、滞回曲线及骨架曲线。结果表明:理论计算、数值模拟与试验结果吻合良好,理论计算模型能够对该试验墩在低周反复荷载作用下的抗推承载力进行较为准确的计算,而且有限元模型可对破坏形态进行仿真;试验墩主要呈现以弯曲破坏为主的"弯剪破坏模式",滞回曲线"捏缩"效应明显;参数分析结果表明体积配筋率及混凝土强度对该桥墩抗震性能的影响较小,而纵筋率与轴压比对其力学性能的影响较大,其中轴压比取5%时试验墩延性最差,取10%时的延性最好。
        In order to study the seismic behavior of double-limb thin-walled piers based on plastic hinge model,the deformation and the thrust bearing capacity of pier under low cyclic loading are calculated by combining four kinds of plastic hinge models,the longitudinal rib slip model and the simplified calculation model of double-limb thinwalled pier. A spatial nonlinear model is established. The mechanical properties and failure modes of the pier under low cyclic loading are calculated. At the same time,scale models of double-limb thin-walled piers are made.And the failure mode,hysteretic curve and skeleton curve are studied by the pseudo static test. The results show that the theoretical calculation,numerical simulation and experimental results are basically consistent. The theoretical calculation model can be used to calculate the thrust bearing capacity of the test pier under low cyclic loading.And the finite element model can simulate the failure mode of test pier. The test pier mainly presents the bendingshearing failure mode with bending failure as the main. The effect of pinch and contraction is obvious from the hysteretic curve. The result of the parameter analysis shows that the volume reinforcement ratio and the concrete strength have less influence on the seismic performance of the pier. But the longitudinal reinforcement ratio and the axial compression ratio have great influence on the mechanical properties of test pier. The ductility of the test pier is the worst when the axial compression ratio is 5%,and the ductility of the test pier is the best when the axial compression ratio is 10%.
引文
[1] Kawashima K. Seismic design and retrofit of bridge[C]∥12WCEE. New Zealand,Reference No. 2828,2000.
    [2] California Department of Transportation. Caltrans Seismic Design Criteria(version1. 2)[S]. Sacramento,California,U. S. A.,2001.
    [3] Tanabe Tada-aki. Comparative Performance of Seismic Design Codes for Concrete Structures[M]. Boulevard(UK):Elsevier Science Ltd.,2000.
    [4] JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.JTG/T B02-01-2008 Guidelines for Seismic Design of Highway Bridge[S]. Beijing:China Communications Press,2008.(in Chinese)
    [5] Priestley M J N,Park R. Strength and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal,1987,84(8):61-76.
    [6] Esmaeily G A,Xiao Yan. Seismic behavior of bridge columns subjected to various loading patterns[R]. University of California,Berkeley,PEER Report,2002/15.
    [7]艾庆华,王东升,李宏男,等.基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学,2009,26(4):158-166.AI Qinghua,WANG Dongsheng,LI Hongnan,et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model[J]. Engineering Mechanics,2009,26(4):158-166.(in Chinese)
    [8]孙治国,王东升,郭迅,等.钢筋混凝土墩柱等效塑性铰长度研究[J].中国公路学报,2011,24(5):56-64.SUN Zhiguo,WANG Dongsheng,GUO Xun,et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport,2011,24(5):56-64.(in Chinese)
    [9]李建中,管仲国.基于性能桥梁抗震设计理论发展[J].工程力学,2011,28(S2):24-30,53.LI Jianzhong,GUAN Zhongguo. Performance-based seismic design for bridges[J]. Engineering Mechanics,2011,28(S2):24-30,53.(in Chinese)
    [10]崔海琴,贺拴海,赵小星,等. CFRP约束空心薄壁墩抗震性能试验[J].长安大学学报(自然科学版),2010,(03):53-59.CUI Haiqin,HE Shuanhai,ZHAO Xiaoxing,et al. Seismic performance test of hollow thin-walled pier with CFRP constraint[J]. Journal of Chang'an University(Natural Sciences Edition),2010,(3):53-59.(in Chinese)
    [11]王成博,史志利,李忠献.随机地震动场多点激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(6):57-62.WANG Chengbo,SHI Zhili,LI Zhongxian. Seismic response analysis for long-span continuous rigid framed bridges under multi-support excitations of random earthquake ground motions[J]. Earthquake Engineering and Engineering Dynamics,2003,23(6):57-62.(in Chinese)
    [12]陆本燕,刘伯权,邢国华,等.桥梁结构基于性能的抗震设防目标与性能指标研究[J].工程力学,2011,28(11):96-103,137.LU Benyan,LIU Boquan,XING Guohua,et al. Study on fortification criterion and quantified performance index for reinforced concrete bridge structures in performance based seismic design[J]. Engineering Mechanics,2011,28(11):96-103,137.(in Chinese)
    [13]陈旭,李建中,刘笑显.墩身高阶振型对高墩地震反应影响[J].同济大学学报(自然科学版),2017,45(2):159-166.CHEN Xu,LI Jianzhong,LIU Xiaoxian. Seismic performance of tall piers influenced by higher-mode effects of piers[J]. Journal of Tongji University(Natural Science),2017,45(2):159-166.(in Chinese)
    [14]卢皓,管仲国,李建中.高阶振型对高墩桥梁抗震性能的影响及其识别[J].振动与冲击,2012,31(17):81-85+98.LU Hao,GUAN Zhongguo,LI Jianzhong. Effect of higher modal shapes on aseismic performance of a bridge with high piers and its identification[J]. Journal of Vibration and Shock,2012,31(17):81-85+98.(in Chinese)
    [15]夏修身,陈兴冲.铁路高墩桥梁基底摇摆隔震与墩顶减震对比研究[J].铁道学报,2011,33(9):102-107.XIA Xiushen,CHEN Xingchong. Controlled rocking and pier top seismic isolation of railway bridge with tall piers[J]. Journal of the China Railway Society,2011,33(9):102-107.(in Chinese)
    [16] Pinto A V,Molina J,Tsionis G. Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section[J]. Earthquake Engineering and Structural Dynamics,2003,32(13):1995-2012.
    [17] Calvi G,Pavese A,Rasulo A,et al. Experimental and numerical studies on the seismic response of R. C. hollow bridge piers[J]. Bulletin of Earthquake Engineering,2005,3(3):267-297.
    [18]蒋丽忠,邵光强,王辉,等.高速铁路圆端形空心桥墩抗震性能试验研究[J].工程力学,2014,31(3):72-82.JIANG Lizhong,SHAO Guangqiang,WANG Hui,et al. Experimental study on seismic performance of hollow piers with rounded rectangular cross section in high-speed railways[J]. Engineering Mechanics,2014,31(3):72-82.(in Chinese)
    [19]蒋丽忠,邵光强,姜静静,等.高速铁路圆端形实体桥墩抗震性能试验研究[J].土木工程学报,2013,46(3):86-95.JIANG Lizhong,SHAO Guangqiang,JIANG Jingjing,et al. Experimental study on seismic performance of solid piers with round ended cross-section in high-speed railway[J]. China Civil Engineering Journal,2013,46(3):86-95.(in Chinese)
    [20]宗周红,夏坚,徐绰然.桥梁高墩抗震研究现状及展望[J].东南大学学报(自然科学版),2013,43(2):445-452.ZONG Zhouhong,XIA Jian,XU Chaoran. Seismic study of high piers of large-span bridges:an overview and research development[J]. Journal of Southeast University(Natural Science Edition),2013,43(2):445-452.(in Chinese)
    [21] Chang G A,Mander J B. Seismic energy based fatigue damage analysis of bridge columns:Part 1[R]. University at Buffalo,State University of New York,Technical Report NCEER-94-0006,1994.
    [22] Sezen H,Setzle E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal,2008,105(3):280-289.
    [23] ACI 374. 2R-13. Guide for Testing Reinforced Concrete Structural Elements Under Slowly Applied Simulated Seismic Loads[S]. ACI Committee 374,2013.
    [24] Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1989,22(3):155-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700