蛋氨酸调控动物主要生理功能的机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methionine regulates the major physiological functions of animals
  • 作者:冯艳 ; 杨琳 ; 朱勇文 ; 王文策
  • 英文作者:FENG Yan;YANG Lin;ZHU YongWen;WANG WenCe;Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University;
  • 关键词:蛋氨酸 ; 代谢机制 ; 抗氧化 ; 肠道健康 ; 免疫
  • 英文关键词:methionine;;metabolic mechanism;;antioxidant;;intestinal health;;immunity
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:华南农业大学动物科学学院广东省动物营养调控重点实验室;
  • 出版日期:2019-01-16 16:53
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(批准号:31501959);; 十三五重点研发计划(批准号:2016YFD0500509-07);; 国家水禽产业技术项目(批准号:CARS-42-15);; 温氏产学研项目资助
  • 语种:中文;
  • 页:JCXK201903004
  • 页数:10
  • CN:03
  • ISSN:11-5840/Q
  • 分类号:38-47
摘要
蛋氨酸是动物机体的必需氨基酸,同时也是饲粮中的限制性氨基酸.蛋氨酸可作为底物参与蛋白质的合成,同时也可作为甲基供体参与DNA, RNA和蛋白质等的甲基化,或通过转巯基途径发挥抗氧化功能以及参与多胺的形成.这些代谢途径对动物的生产性能、抗氧化能力、免疫功能以及肠道健康等方面有着重要的调控作用.本文对近年来关于蛋氨酸调控生理功能的机制进行综述,以期为蛋氨酸代谢机制的研究及科学应用提供参考.
        Methionine is an essential amino acid in animals and it is also a limited amino acid in the diet. Methionine can be used as a substrate to participate in protein synthesis. It can also be used as a methyl donor involved in the methylation of DNA, RNA and protein, or through the transfer of sulfhydryl pathways to play anti-oxidative roles and participate in the formation of polyamines. These metabolic pathways have important regulatory effects on animal performance, antioxidant capacity, immune function, and intestinal health. This article reviews the mechanism of methionine modulating physiological functions in recent years in order to provide reference for the study and scientific application of methionine metabolism mechanism.
引文
1 Xu Q Y, Hu L Y, Wang M Z. Metabolic pathway and turnover mechanism of methionine in animals(in Chinese). Chin J Anim Nutr, 2017, 29:3877–3884[徐巧云,胡良宇,王梦芝.蛋氨酸在动物体内代谢途径与周转机制.动物营养学报, 2017, 29:3877–3884]
    2 Lu S C. S-adenosylmethionine. Int J Biochem Cell Biol, 2000, 32:391–395
    3 Lu S C, Mato J M. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev, 2012, 92:1515–1542
    4 Hu C J, Jiang Q Y, Kong X F. Research progress on methionine metabolism and physiological functions of livestock and poultry(in Chinese).Feed Indust, 2016, 37:23–27[胡诚军,江青艳,孔祥峰.畜禽蛋氨酸代谢及其生理功能研究进展.饲料工业, 2016, 37:23–27]
    5 Brosnan J T, Brosnan M E. The sulfur-containing amino acids:an overview. J Nutrition, 2006, 136:1636S–1640S
    6 Miller D, Xu H, White R H. S-inosyl-L-homocysteine hydrolase, a novel enzyme involved in S-adenosyl-L-methionine recycling. J Bacteriol,2015, 197:2284–2291
    7 Anderson O S, Sant K E, Dolinoy D C. Nutrition and epigenetics:an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutritional Biochem, 2012, 23:853–859
    8 Waterland R A. Assessing the effects of high methionine intake on DNA methylation. J Nutrition, 2006, 136:1706S–1710S
    9 Wen C, Chen X, Chen G Y, et al. Methionine improves breast muscle growth and alters myogenic gene expression in broilers. J Animal Sci,2014, 92:1068–1073
    10 Liu G, Zong K, Zhang L, et al. Dietary methionine affect meat Qulity and Myostatin gene exon 1 region methylation in skeletal muscle tissues of broilers. Agric Sci China, 2010, 9:1338–1346
    11 Wen C, Chen Y, Wu P, et al. MSTN, mTOR and FoxO4 are involved in the enhancement of breast muscle growth by methionine in broilers with lower hatching weight. PLoS ONE, 2014, 9:e114236
    12 Liu H H. Effects of IGF-1 on duck embryonic muscle development and its molecular mechanism(in Chinese). Dissertation for Doctoral Degree.Chengdu:Sichuan Agricultural University, 2012[刘贺贺. IGF-1对鸭胚肌肉发育影响及其分子机理研究.博士学位论文.成都:四川农业大学, 2012]
    13 Yang Z Q, Qing Y, Zhu Q, et al. Genetic effects of polymorphisms in myogenic regulatory factors on chicken muscle fiber traits. Asian Australas J Anim Sci, 2015, 28:782–787
    14 Estrella N L, Desjardins C A, Nocco S E, et al. MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation. J Biol Chem, 2015, 290:1256–1268
    15 Wen C, Jiang X, Ding L, et al. Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast-and slow-growing broilers. Sci Rep, 2017, 7:1924
    16 Jiang X Y. Effect of methionine on growth, pectoral muscle development and meat quality of Green-footed chicken(in Chinese). Dissertation for Master’s Degree. Nanjing:Nanjing Agricultural University, 2016[蒋雪樱.蛋氨酸对青脚麻鸡生长、胸肌发育及肉品质的影响.硕士学位论文.南京:南京农业大学, 2016]
    17 Han B, Tong J, Zhu M J, et al. Insulin-like growth factor-1(IGF-1)and leucine activate pig myogenic satellite cells through mammalian target of rapamycin(mTOR)pathway. Mol Reprod Dev, 2008, 75:810–817
    18 Stitt T N, Drujan D, Clarke B A, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell, 2004, 14:395–403
    19 Amirouche A, Durieux A C, Banzet S, et al. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology, 2009, 150:286–294
    20 Reed S A, Sandesara P B, Senf S M, et al. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J, 2012, 26:987–1000
    21 Ge Y, Chen J. Mammalian target of rapamycin(mTOR)signaling network in skeletal myogenesis. J Biol Chem, 2012, 287:43928–43935
    22 Cai S, Ye Q H, Zeng X F. Effects of methionine on reproductive performance of livestock and its mechanism(in Chinese). Chin J Anim Nutr,2018, 30:881–887[蔡爽,叶倩红,曾祥芳.蛋氨酸对畜禽繁殖性能的影响及机制.动物营养学报, 2018, 30:881–887]
    23 Zeng X, Wang F, Fan X, et al. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutrition, 2008,138 :1421–1425
    24 Ramathal C Y, Bagchi I C, Taylor R N, et al. Endometrial decidualization:of mice and men. Semin Reprod Med, 2010, 28:17–26
    25 Bazer F W, Song G, Kim J, et al. Mechanistic mammalian target of rapamycin(MTOR)cell signaling:effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cellular Endocrinol, 2012, 354:22–33
    26 Ikeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev, 2012, 58:91–97
    27 Toledo M Z, Baez G M, Garcia-Guerra A, et al. Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS ONE, 2017, 12:e0189117
    28 Drazic A, Winter J. The physiological role of reversible methionine oxidation. Biochim Biophys Acta(BBA)-Proteins Proteom, 2014, 1844:1367–1382
    29 Teng Z W. Effects of embryonic methionine on growth performance, antioxidant performance and chest muscle development of Landes goose(in Chinese). Dissertation for Master’s Degree. Changchun:Jilin Agricultural University, 2017[滕战伟.胚胎给养蛋氨酸对朗德鹅生长性能、抗氧化性能和胸肌发育的影响.硕士学位论文.长春:吉林农业大学, 2017]
    30 Wang Q F, Zhao S F, Zhang X C. Effects of methionine on rat embryo development(in Chinese). Inner Mongolia Med J, 2000, 1:1–3[王秋枫,赵树芬,张秀池.蛋氨酸对大鼠胚胎发育影响的研究.内蒙古医学杂志, 2000, 1:1–3]
    31 Leung K Y, Pai Y J, Chen Q, et al. Partitioning of One-Carbon units in folate and methionine metabolism is essential for neural tube closure. Cell Rep, 2017, 21:1795–1808
    32 Han C X, Miao C. Function and metabolic absorption process of methionine(in Chinese). Mode J Anim Husbandr Vet Med, 2013, 9:75–80[韩春晓,苗翠.蛋氨酸的功能及代谢吸收过程.现代畜牧兽医, 2013, 9:75–80]
    33 Komarnisky L A, Christopherson R J, Basu T K. Sulfur:its clinical and toxicologic aspects. Nutrition, 2003, 19:54–61
    34 Stadtman E R, Moskovitz J, Berlett B S, et al. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cellular Biochem, 2002, 234/235:3–9
    35 Kim G, Weiss S J, Levine R L. Methionine oxidation and reduction in proteins. Biochim Biophys Acta(BBA)-General Subjects, 2014, 1840:901 –905
    36 Pérez J A M, Fregosoaguilar T A. Chemistry of Natural Antioxidants and Studies Performed with Different Plants Collected in Mexico. In:Morales-Gonzalez J A. Oxidative Stress and Chronic Degenerative Diseases. London:InTech, 2013
    37 Salmon A B, Kim G, Liu C, et al. Effects of transgenic methionine sulfoxide reductase A(MsrA)expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biol, 2016, 10:251–256
    38 Kim S K, Kim Y C. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J Hepatol, 2005, 42:907 –913
    39 Reeds P, Jahoor F. The amino acid requirements of disease. Clinical Nutrition, 2001, 20:15–22
    40 Chen Y, Dong H, Thompson D C, et al. Glutathione defense mechanism in liver injury:insights from animal models. Food Chem Toxicol, 2013,60 :38–44
    41 Ribas V, Garc?a-Ruiz C, Fern??ndez-Checa J?C. Glutathione and mitochondria. Front Pharmacol, 2014, 5:151
    42 Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radical Biol Med, 2014, 66:75–87
    43 Atmaca G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med J, 2004, 45:776
    44 You B R, Park W H. Auranofin induces mesothelioma cell death through oxidative stress and GSH depletion. Oncol Rep, 2016, 35:546–551
    45 Shin H R, You B R, Park W H. PX-12-induced HeLa cell death is associated with oxidative stress and GSH depletion. Oncol Lett, 2013, 6:1804–1810
    46 Yin J, Ren W, Yang G, et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res, 2016, 60:134–146
    47 Pasantes-Morales H. Taurine Homeostasis and Volume Control. In:Glial Amino Acid Transporters. Cham:Springer, 2017. 33–53
    48 Spriet L L, Whitfield J. Taurine and skeletal muscle function. Curr Opin Clinical Nutrit Metabolic Care, 2015, 18:96–101
    49 Townsend D M, Tew K D, Tapiero H. Sulfur containing amino acids and human disease. Biomed Pharmacother, 2004, 58:47–55
    50 Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18:872–879
    51 Tyagi N, Ovechkin AV, Lominadze D, et al. Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem, 2006, 98:1150–1162
    52 Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J, 2004, 18:1165–1167
    53 W Y N. Methionine restriction to improve lipid metabolism and redox status in mice with high fat diet by endogenous hydrogen sulfide(in Chinese). Dissertation for Master’s Degree. Wuxi:Jiangnan University, 2017[王雅楠.蛋氨酸限制通过内源性硫化氢改善高脂饮食小鼠脂代谢和氧化还原状态的研究.硕士学位论文.无锡:江南大学, 2017]
    54 Hou Y Q, Guo Y M, Zhou Y P. Protein, amino acid nutrition and animal body immune function(in Chinese). Feed Ind, 2000, 8:5–7[侯永清,呙于明,周毓平.蛋白质、氨基酸营养与动物机体免疫机能.饲料工业, 2000, 8:5–7]
    55 Zhou Z, Riboni M V, Bulgari O, et al. Physiological and molecular mechanisms associated with performance, immunometabolic status, and liver function in transition dairy cows fed rumen-protected methionine or choline. J Animal Sci, 2016, 94:22–23
    56 Sutter B M, Wu X, Laxman S, et al. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A.Cell, 2013, 154:403–415
    57 Laxman S, Sutter B M, Tu B P. Methionine is a signal of amino acid sufficiency that inhibits autophagy through the methylation of PP2A.Autophagy, 2014, 10:386–387
    58 Tang Y, Tan B, Xiong X, et al. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids, 2015, 47:2199–2204
    59 Russell R C, Yuan H X, Guan K L. Autophagy regulation by nutrient signaling. Cell Res, 2014, 24:42–57
    60 Lee B C, Dikiy A, Kim H Y, et al. Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta(BBA)-General Subjects, 2009, 1790:1471–1477
    61 Wassef R, Haenold R, Hansel A, et al. Methionine sulfoxide reductase a and a dietary supplement S-methyl-L-cysteine prevent Parkinson’s-like symptoms. J Neurosci, 2007, 27:12808–12816
    62 Wood J M, Decker H, Hartmann H, et al. Senile hair graying:H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J, 2009, 23:2065–2075
    63 Kim H Y, Gladyshev V N. Methionine sulfoxide reductases:selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J,2007, 407:321–329
    64 Lee B C, Péterfi Z, Hoffmann F K W, et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell, 2013, 51:397–404
    65 Lee B C, Lee S G, Choo M K, et al. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci Rep, 2017, 7:5119
    66 Hote P T, Sahoo R, Jani T S, et al. Ethanol inhibits methionine adenosyltransferase II activity and S-adenosylmethionine biosynthesis and enhances caspase-3-dependent cell death in T lymphocytes:relevance to alcohol-induced immunosuppression. J Nutritional Biochem, 2008, 19:384 –391
    67 Yang M L, Gee A J P, Gee R J, et al. Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity, 2013, 46:21–31
    68 Ara A I, Xia M, Ramani K, et al. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology, 2008, 47:1655–1666
    69 Zhou Y W, Tan B J, Li Y Y, et al. Progress in research on methionine nutrition in poultry(in Chinese). Feed Expo(Tech Ed), 2008, 2:28–31[周彦文,谭本杰,李玉艳,等.家禽蛋氨酸营养研究进展.饲料博览(技术版), 2008, 2:28–31]
    70 Riedijk M A, Stoll B, Chacko S, et al. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci USA, 2007, 104:3408–3413
    71 Li H, Fang Z F, Wan H F, et al. Effects of DL-methionine or DL-2-hydroxy-4-methylthiobutyric acid on the performance of sows and intestinal development of piglets(in Chinese). In:Chinese Society of Animal Husbandry and Veterinary Medicine Animal Nutrition Branch. Proceedings of the 11th National Animal Nutrition Symposium of Animal Nutrition Society of China Animal Husbandry and Veterinary Society. Beijing:Animal Nutrition Branch of China Animal Husbandry and Veterinary Association, 2012. 1[李豪,方正锋,万海峰,等.饲粮添加DL-蛋氨酸或DL-2-羟基-4-甲硫基丁酸对母猪生产性能和仔猪肠道发育的影响.见:中国畜牧兽医学会动物营养学分会.中国畜牧兽医学会动物营养学分会第十一次全国动物营养学术研讨会论文集.北京:中国畜牧兽医学会动物营养学分会, 2012. 1]
    72 Yu W, Zhao R Y, Zhao Y, et al. Effects of methionine hydroxyl analogues on intestinal redox status in broilers(in Chinese). Food Ind Sci Technol, 2012, 33:99–103[于玮,赵瑞英,赵琰,等.蛋氨酸羟基类似物对肉鸡肠道氧化还原状态的影响.食品工业科技, 2012, 33:99–103]
    73 Zhao Y. Effects of methionine hydroxyl analogues on intestinal redox status and bone development in broilers(in Chinese). Master Dissertation.Wuxi:Jiangnan University, 2013[赵琰.蛋氨酸羟基类似物对肉鸡肠道氧化还原状态和骨骼发育的影响.硕士学位论文.无锡:江南大学,2013]
    74 Guo Y M, Liu D, Zhang B K. Intestinal barrier function and nutritional regulation in poultry(in Chinese). Chin J Anim Nutr, 2014, 26:3091–3100[呙于明,刘丹,张炳坤.家禽肠道屏障功能及其营养调控.动物营养学报, 2014, 26:3091–3100]
    75 Martín-Venegas R, Brufau M T, Guerrero-Zamora A M, et al. The methionine precursor DL-2-hydroxy-(4-methylthio)butanoic acid protects intestinal epithelial barrier function. Food Chem, 2013, 141:1702–1709
    76 Han Y. Toxic effect of methionine in Peking duck. China Feed, 2006
    77 Xue J J, Xie M, Tang J, et al. Effects of excess DL-and L-methionine on growth performance of starter Pekin ducks. Poultry Sci, 2018, 97:946–950
    78 Xie M, Hou S S, Liu F Z. Research progress on methionine toxicity and its mechanism of poisoning(in Chinese). Feed Expo, 2002, 4:14–15[谢明,侯水生,刘福柱.蛋氨酸毒性及其中毒机制的研究进展.饲料博览, 2002, 4:14–15]
    79 Nagao K, Oki M, Tsukada A, et al. Alleviation of body weight loss by dietary methionine is independent of insulin-like growth factor-I in proteinstarved young chickens. Animal Sci J, 2011, 82:560–564
    80 Greaves J P. The toxic effect of methionine. Nutrit Rev, 2010, 23:202–204
    81 Selhub J, Troen A M. Sulfur amino acids and atherosclerosis:a role for excess dietary methionine. Ann NY Acad Sci, 2016, 1363:18–25
    82 Orgeron M L, Stone K P, Wanders D, et al. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog Mol Biol Transl Sci, 2014, 121:351–376
    83 Yin J, Ren W, Chen S, et al. Metabolic regulation of methionine restriction in diabetes. Mol Nutr Food Res, 2018, 62:1700951

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700