带有轴流螺旋级的模型诱导轮中的非定常流动和压力脉动(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unsteady Flow and Pressure Pulsations in a Model Axial-Vortex Stage Inducer
  • 作者:Sergey ; Timushev ; Dmitry ; Klimenko ; Ivan ; Kazennov ; 李家文
  • 英文作者:Sergey Timushev;Dmitry Klimenko;Ivan Kazennov;LI Jia-wen;Rocket Engines Department,Moscow Aviation Institute (National Research University);School of Astronautics,Beihang University;
  • 关键词:螺旋诱导轮 ; 轴流螺旋级 ; 螺旋离心泵 ; 空化性能 ; 压力脉动
  • 英文关键词:Screw inducer;;Axial-vortex stage;;Screw-centrifugal pump;;Cavitation capacity;;Pressure pulsations
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:莫斯科航空学院(国立研究大学)火箭发动机学院;北京航空航天大学宇航学院;
  • 出版日期:2019-02-28 09:38
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 语种:英文;
  • 页:TJJS201907004
  • 页数:9
  • CN:07
  • ISSN:11-1813/V
  • 分类号:24-32
摘要
为了研究提高离心泵抗气蚀性能的措施,以抑制作用在泵过流区域的压力脉动、振动和动力载荷,减轻空化气蚀造成的重复使用液体火箭发动机涡轮泵损伤,满足泵的高转速、低入口压力、减小尺寸和重量等技术要求,采用计算流体力学软件,对轴流式诱导轮和带有轴流螺旋级的诱导轮进行了非定常压力脉动和气蚀性能的三维仿真计算研究。结果表明,与单一的轴流式螺旋诱导轮相比,带有轴流式螺旋级的诱导轮能够改善泵的气蚀特性,气蚀系数提高了25%,初始气蚀系数提高了30%,诱导轮出口位置的叶片通过频率压力脉动得到了抑制。
        In consideration of improving cavitation capacity of centrifugal pump to inhibit pressure pulsations,vibrations and dynamic loads in flow passing areas,alleviating damages of reusable liquid rocket engine turbo-pumps caused by cavitation erosion and satisfying the requirements of high rotation speed,low inlet pressure,small sizes and light weight,three dimensional simulations of unsteady pressure pulsation and cavitation capacity are carried out to a single screw inducer and an inducer with axial-vortex stage utilizing CFD methods. The results show that compared with single screw inducer,inducer with axial-vortex stage has 25% higher cavitation coefficient,30% higher initial cavitation coefficient and lower pressure pulsation of blade passing frequency in the outlet of inducer,which all prove that cavitation capacity is obviously ameliorated.
引文
[1]Brennen C E.Hydrodynamic of Pumps[M].England:Cambridge University Press,1994.
    [2]Ryan R S,Gross L A.The Space Shuttle Main Engine Liquid Oxygen Pump High-Synchronous Vibration Issue,the Problem,the Resolution Approach,the Solution[R].AIAA 94-3153.
    [3]Akira O,Shogo W,Hiroshi T,et al.Development of Cryogenic Turbopumps for the LE-7A Engine[J].IHIEngineering Review,2004,37(1):9-13.
    [4]Zoladz T.Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump[R].AIAA 2000-3403.
    [5]Goirand B,MertZ A,Coussellin F.Experimental Investigations of Radial Loads Induced by Partial Cavitation with Liquid Hydrogen Inducer[C].Cambridge:The 3rd International Conference on Cavitation,1992.
    [6]Liang H,Chen Z.Characteristic Analysis of Flow-Induced Vibrations on Inducer of Oxygen Pump[J].Journal of Propulsion and Power,2002,18(2):289-294.
    [7]徐朝晖.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D].北京:清华大学,2004.
    [8]Brennen C,Acosta A J.The Dynamic Transfer Function for a Cavitating Inducer[J].Journal of Fluids Engineering,1976,98:182-191.
    [9]Semenov Y A,Fujii A,Tsujimoto Y.Rotating Choke in Cavitating Turbopump Inducer[J].Journal of Fluids Engineering,2004,126(1):87-93.
    [10]Rapposelli E,Cervone A,D′Agostino L.A New Cavitating Pump Rotordynamic Test Facility[R].AIAA 2002-4285.
    [11]Shimura T,Yoshida M,Kamijo K.A Rotating Stall Type Phenomenon Caused by Cavitation in LE-7A LH2Turbopump[J].JSME International Journal Series B-Fluids and Thermal Engineering,2002,45(1):41-46.
    [12]Zotov B N,Ankudinov A A.Axial-Vortex Pump[P].Russian Federation Patent,2014509,1991-05-22.
    [13]Ankudinov A A,Kuftov A F.Energy Characteristics of an Axial-Vortex Pump[J].Izvestiya VUZov,Moscow:Mechanical Engineering,1989,(2):52-56.
    [14]Ankudinov A A.Calculation and Design of the Pre-activated Axial-Vortex Stage of a Centrifugal Pump[M].Moscow:Bauman Institute Publications,2003.
    [15]Wilcox D C.Turbulence Modeling for CFD[M].La Canada:DCW Industries Inc.,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700