洱海流域生态塘湿地氮截留特征及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Effects of Nitrogen Interception in the Ecological Multi Pond Wetlands in Erhai Lake Sub-Basin
  • 作者:李丹 ; 储昭升 ; 刘琰 ; 黄民生 ; 杜北 ; 郑丙辉
  • 英文作者:LI Dan;CHU Zhaosheng;LIU Yan;HUANG Minsheng;DU Bei;ZHENG Binghui;National Engineering Laboratory of Lake Pollution Control and Eco-remediation Technology, Chinese Research Academy of Environmental Sciences;College of Ecological and Environmental Sciences,East China Normal University;
  • 关键词:生态塘湿地 ; 农村面源污染 ; 截留 ; 设计参数
  • 英文关键词:ecological multi pond wetlands;;rural non-point source pollution;;nitrogen interception;;design parameters
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:中国环境科学研究院湖泊水污染治理与生态修复技术国家工程实验室;华东师范大学生态与环境科学学院;
  • 出版日期:2018-08-22 17:22
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.253
  • 基金:国家水体污染控制与治理科技重大专项(No.2017ZX07401003,2017ZX07401004)~~
  • 语种:中文;
  • 页:HJKX201902005
  • 页数:7
  • CN:02
  • ISSN:11-1827/X
  • 分类号:36-42
摘要
为考察生态塘湿地对农村面源污染水体氮截留效果及其影响因素,以洱海子流域生态塘湿地为例,对其基本设计参数和水质进行调查分析,评估生态塘湿地对氮的截留效果,识别不同形态氮在湿地中的迁移转化特征,剖析生态塘湿地中氮截留的主控因子.结果表明:(1)污水经生态塘湿地净化处理后,出水水质显著改善.出水氮达GB 3838—2002《地表水环境质量标准》Ⅲ类标准的比例为37.5%.(2)Spearman相关分析表明,湿地净化效率与湿地氮输入密切相关,生态塘湿地可以有效实现氮的截留,η(TN)(η为去除率)分别与ρ(NH_4~+-N)(R=0.226,n=84)、ρ(TN)(R=0.215,n=84)呈显著正相关,与ρ(NO_3~--N)(R=-0.201,n=84)相关性不强,硝酸盐氮截留是其效率提高的主要制约因素.(3)丰水期、枯水期高低水位交替运行有助于氮截留效率的稳定,枯水期生态塘几乎可以截蓄汇水分区内全部农村面源污水,实现污水的收集消纳及净化.丰水期和枯水期平均η(NH_4~+-N)分别为57.72%和55.30%;平均η(NO_3~--N)分别为49.45%和46.73%;平均η(TN)分别为54.41%和54.20%.(4)单因素分析法有助于识别影响湿地氮净化效率的主控因子.研究显示,当生态塘湿地面积(<8 000 m~2)、库容(<15 000 m~3)、水深(<2.0 m)在一定范围内时,氮净化效率与面积、库容、水深响应关系不显著,但合适的水深(<0.4 m和>1.5 m)有利于氮的截留.
        To investigate the efficiency of nitrogen interception for rural non-point source pollution and to identify the dominating factors which restrain the performance of the ecological multi pond wetlands,basic design parameters and nitrogen concentrations were collected and analyzed in Erhai Lake sub-basin.The results showed that the water quality of the effluent was significantly improved after flowing through the ecological multi pond wetlands.(1)37.5%of the effluent nitrogen concentrations were below the standard water quality of‘the environmental quality standards for surface water’(GB 3838-2002)Ⅲ.The Spearman correlation analysis showed that the purification efficiency was closely related to the influent nitrogen concentration and high nitrogen concentration could be effectively intercepted by the ecological multi pond wetlands.η(TN)was positively correlated withρ(NH_4~+-N)(R=0.226,n=84)andρ(TN)(R=0.215,n=84),while it had a weakly negative correlation withρ(NO_3~--N)(R=-0.201,n=84).Nitrate interception could be the limiting factor for the purification efficiency.(3)The alternation of high-water level ecological in the wet season and low water level ecological in the dry season was conducive to the stabilization of nitrogen detention efficiency.Wastewater from rural non-point sources in each catchment area was almost collected,intercepted and purified in the dry season.In the wet and dry season,η(NH_4~+-N)was 57.72%and 55.30%,respectively.η(NO_3~--N)was 49.45%and 46.73%,whileη(TN)was 54.41%and 54.20%,respectively.The single factor analysis was helpful to identify the controlling factors of nitrogen purification efficiency.No significant relationship was observed between nitrogen purification efficiency and design parameters(area(<8,000 m~2),storage capacity(<15,000 m~3)and water depth(<2.0 m))in this Erhai Lake basin.However,a suitable water depth(<0.4 m and>1.5 m)is beneficial to the nitrogen removal.
引文
[1]郑丙辉.“十二五”太湖富营养化控制与治理研究思路及重点[J].环境科学研究,2014,27(7):683-687.ZHENG Binghui.Research system design for eutrophication control and management of Taihu Lake during the 12thFive-Year Plan[J].Research of Environmental Sciences,2014,27(7):683-687.
    [2] WANG Shengrui,ZHENG Binghui,CHEN Cui,et al. Thematic issue:water of the Erhai and Dianchi Lakes[J]. Environmental Earth Sciences,2015,74(5):3685-3688.
    [3]张闻涛,邢奕,卢少勇,等.入洱海河流临湖段底泥氮的分布[J].环境科学研究,2015,28(2):213-218.ZHANG Wentao,XING Yi,LU Shaoyong,et al. Characteristics of nitrogen distribution in sediments of inflow rivers of Erhai Lake,China[J].Research of Environmental Sciences,2015,28(2):213-218.
    [4] HE Liang,ZHU Tianshun,CAO Te,et al. Characteristics of early eutrophication encoded in submerged vegetation beyond water quality:a case study in Lake Erhai[J]. Environmental Earth Sciences,2015,74(5):3701-3708.
    [5] VYMAZAL J. Constructed wetlands for wastewater treatment five decades of experience[J]. Environmental Science&Technology,2010,45(1):61-69.
    [6] TAO Wendong,SAUBA K,FATTAH K P,et al. Designing constructed wetlands for reclamation of pretreated wastewater and stormwater[J]. Reviews in Environmental Science&BioTechnology,2017,16(1):37-57.
    [7] MAUCIERI C,BARBERA AC,VYMAZAL J,et al.A review on the main affecting factors of greenhouse gases emission in constructed wetlands[J]. Agricultural&Forest Meteorology,2017,236:175-193.
    [8] GUO Changqiang,CUI Yuanlai,DONG Bin,et al. Tracer study of the hydraulic performance of constructed wetlands planted with three different aquatic plant species[J]. Ecological Engineering,2017,102:433-442.
    [9] AL-RUBAEI A M,MERRIMAN L S,HUNT W F,et al.Survey of the operational status of 25 swedish municipal stormwater management ponds[J]. Journal of Environmental Engineering,2017,143(6):05017001.
    [10] LUCAS R,EARL E R,BABATUNDE A O,et al. Constructed wetlands for stormwater management in the UK:a concise review[J].Civil Engineering&Environmental Systems,2015,32(3):1-18.
    [11]国家环境保护局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社,2002.
    [12]白献宇,胡小贞,庞燕.洱海流域低污染水类型、污染负荷及分布[J].湖泊科学,2015,27(2):200-207.BAI Xianyu,HU Xiaozhen,PANG Yan. Pollution toad distribution and characteristics of low-polluted water in Lake Erhai watershed[J].Journal of Lake Science,2015,27(2):200-207.
    [13]陈纬栋.洱海流域农业面源污染负荷模型计算研究[D].上海:上海交通大学,2011:50-55.
    [14] GORITO A M,RIBEIRO A R,CMR A,et al. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation[J]. Environmental Pollution,2017,227:428-443.
    [15] CHEN Hongjun. Surface-flow constructed treatment wetlands for pollutant removal:applications and perspectives[J]. Wetlands,2011,31:805-814.
    [16] DU Lu,TRINBA X T,CHEN Qianru,et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands(IVCWs)for treating reclaimed water[J].Bioresource Technology,2018,249:644-651.
    [17] LU Shaoyong,ZHANG Pengyi,JIN Xiangcan,et al. Nitrogen removal from agricultural runoff by full-scale constructed wetland in China[J].Hydrobiologia,2009,621(1):115-126.
    [18] ZHOU Sheng,HOSOMI M.Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan[J]. Ecological Engineering,2008,32(2):147-155.
    [19] WU Shubiao,WALLACE S,BRIX H,et al.Treatment of industrial effluents in constructed wetlands:challenges,operational strategies and overall performance[J]. Environmental Pollution,2015,201:107-120.
    [20] HUA Yumei,PENG Lian,ZHANG Shaohui,et al.Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater[J].Ecological Engineering,2017,108:70-77.
    [22] VYMAZAL J. Emergent plants used in free water surface constructed wetlands:a review[J]. Ecological Engineering,2013,61:582-592.
    [21] LIU Junjie,DONG Bin,GUO Changqiang,et al. Variations of effective volume and removal rate under different water levels of constructed wetland[J].Ecological Engineering,2016,95:652-664.
    [23] BODIN H,PERSOON J,ENGLUND J E,et al. Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal[J].Journal of Hydrology,2013,501:1-12.
    [24] ZHANG Dongqing,JINADASA K B,GERBERG R M,et al.Application of constructed wetlands for wastewater treatment in developing countries:a review of recent developments(2000-2013)[J].Journal of Environmental Management,2014,141:116-131.
    [25] HAN Li,RANDHIR T M,HUANG Minsheng. Design and assessment of stream-wetland systems for nutrient removal in an urban watershed of China[J]. Water,Air&Soil Pollution,2017,228(4):139-154.
    [26] LI Xinzhen,JONGMAN R H G,HU Yunman,et al. Relationship between landscape structure metrics and wet-land nutrient retention function:a case study of Liaohe Delta,China[J]. Ecological Indicators,2005,5:339-349.
    [27] JOHANNESSONA K M,KYNKAANNIEMI P,ULENB B,et al.Phosphorus and particle retention in constructed wetlands:a catchment comparison[J].Ecological Engineering,2015,80:20-31.
    [28] KADLEC R H,WALALLCE S D.Treatment Wetlands[M].2nd ed.Washington DC:CRC Press,Taylor&Francis Group,2008.
    [29]王洪秀.规模化表面流人工湿地水质与水力特性研究[D].济南:山东大学,2014:44-56.
    [30] CHANG T J,CHANG Yusheng,LEI Weiting,et al.Flow uniformity and hydraulic efficiency improvement of deep-water constructed wetlands[J].Ecological Engineering,2016,92:28-36.
    [31] TANNER C C,KADLECB R H.Influence of hydrological regime on wetland attenuation of diffuse agricultural nitrate losses[J].Ecological Engineering,2013,56:79-88.
    [32]刘锐.表面流人工湿地和强化生态塘组合工艺净化市区河水研究[D].哈尔滨:哈尔滨工业大学,2012:42-52.
    [33] AGENCY E P. Constructed wetlands treatment of municipal wastewaters[M]. Washington DC:United States Environmental Protection Agency(US EPA),2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700