苯基硅橡胶热控涂层材料抗原子氧腐蚀能力的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Resistance of Thermal Control Coating of Phenyl Silicone Rubber to Hyperthermal Atomic Oxygen Attack
  • 作者:王黑龙 ; Murray ; J.Vanessa ; Minton ; K.Timothy ; 戴东旭 ; 武博涵 ; 杨阳 ; 车丽
  • 英文作者:WANG Hei-long;MURRAY J.Vanessa;MINTON K.Timothy;DAI Dong-xu;WU Bo-han;YANG Yang;CHE Li;College of Environmental Sciences and Engineering,Dalian Maritime University;State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences;Department of Chemistry and Biochemistry,Montana State University;Beijing Institute of Spacecraft Environment Engineering;Aerospace Research Institute of Materials & Processing Technology;Department of Physics,Dalian Maritime University;
  • 关键词:激光爆破 ; 原子氧 ; 苯基硅橡胶热控涂层 ; 抗腐蚀
  • 英文关键词:Laser detonation;;Atomic oxygen;;Thermal control phenyl silicone rubber;;Corrosion resistance
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:大连海事大学环境科学与工程学院;中国科学院大连化学物理研究所分子反应动力学国家重点实验室;蒙大拿州立大学化学与生物化学系;北京卫星环境工程研究所;航天材料与工艺研究所;大连海事大学物理系;
  • 出版日期:2017-06-30
  • 出版单位:宇航学报
  • 年:2017
  • 期:v.38
  • 基金:国家自然科学基金(21473015,41574101);; 全国优秀博士学位论文作者专项资金(201222);; 中央高校基本科研业务费专项资金(3132017067)
  • 语种:中文;
  • 页:YHXB201706014
  • 页数:7
  • CN:06
  • ISSN:11-2053/V
  • 分类号:112-118
摘要
为了评估材料的抗原子氧腐蚀能力,首先在地面模拟设备上通过激光爆破法产生平动能约为4.5 e V的原子氧束源,然后利用此高能氧束源对苯基硅橡胶热控涂层材料进行暴露实验。材料受高能原子氧轰击而导致的影响,分别通过质量、X射线光电子能谱和扫描电镜进行表征。结果显示,原子氧累积通量9.5×10~(19)atoms/cm~2及8.5×10~(20)atoms/cm~2暴露实验后,材料表面微观形貌没有明显腐蚀,质量有少许增加,表面化学组成发生明显变化,分析认为是形成非挥发性物质SiO_x。实验结果表明,苯基硅橡胶热控涂层材料具有优越的抗原子氧腐蚀能力,推测其机理是形成的SiO_x钝化层作为保护层对其下方的材料进行保护,阻止原子氧对材料进一步腐蚀。
        In order to assess the resistance ability of thermal control phenyl silicone rubber material to hyperthermal atomic oxygen,exposure experiments are carried out by use of an atomic oxygen beam with high kinetic energy of~ 4. 5 e V,which is produced in a ground-based atomic oxygen simulation facility based on the laser-detonation method.Sample mass measurement,X-ray photoelectron spectroscopy,and scanning electron microscopy are performed prior to and after exposure,to evaluate the changes in the material morphology and chemistry caused by a hyperthermal atomic oxygen attack. Results indicate that after exposure with fluences of 9. 5 × 10~(19) and 8. 5 × 10~(20) atoms · cm~(-2),the surface morphology doesn't show obvious sign of erosion,the sample mass increases a little bit,and the surface chemistry changes obviously with the formation of the nonvolatile SiO_x. It can be concluded that the thermal control phenyl silicone rubber has good resistance ability and is durable under the bombardment of the hyperthermal atomic oxygen. The proposed mechanism is that the formed SiO_x passivating layer acts as a protective layer protecting the underlying material from further erosion.
引文
[1]Koontz S L,Albyn K,Leger L J.Atomic oxygen testing with thermal atom systems-a critical evaluation[J].Journal of Spacecraft and Rockets,1991,28(3):315-323.
    [2]Reddy M R.Review effect of low earth orbit atomic oxygen on spacecraft materials[J].Journal of Materials Science,1995,30(2):281-307.
    [3]Packirisamy S,Schwam D,Litt M H.Review atomic oxygen resistant coatings for low earth orbit space structures[J].Journal of Materials Science,1995,30(2):308-320.
    [4]Grossman E,Gouzman I.Space environment effects on polymers in low earth orbit[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,208:48-57.
    [5]Kleiman J I,Iskanderova Z A,Perez F J,et al.Protective coatings for LEO environments in spacecraft applications[J].Surface and Coatings Technology,1995,76-77(2):827-834.
    [6]Rutledge S,Banks B,Cales M.A comparison of atomic oxygen erosion yields of carbon and selected polymers exposed in ground based facilities and in low Earth orbit[C].The 25th Plasmadynamics and Lasers Conference,Colorado Springs,CO,USA,1994.
    [7]De Groh K K,Banks B A,Mc Carthy C E,et al.Misse 2 peace polymers atomic oxygen erosion experiment on the international space station[J].High Performance Polymers,2008,20(4-5):388-409.
    [8]Groh H,Miller S,Smith I,et al.Adhesion of silicone elastomer seals for nasa's crew exploration vehicle[C].The 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Hartford,CT,USA,2008.
    [9]Laikhtman A,Gouzman I,Verker R,et al.Atomic oxygen and uv irradiation effects on fluorosilicone rubber:comparison of rf plasma and in-flight exposure[J].High Performance Polymers,2008,20(4-5):447-460.
    [10]Banks B A,Backus J A,Manno M V,et al.Prediction of atomic oxygen erosion yield for spacecraft polymers[J].Journal of Spacecraft and Rockets,2011,48(1):14-22.
    [11]Yagnamurthy S,Chen Q,Chen C G,et al.Erosion yield of epoxy-silica nanocomposites at the lower earth orbit environment of the international space station[J].Journal of Composite Materials,2013,47(1):107-117.
    [12]Minton T K,Wright M E,Tomczak S J,et al.Atomic oxygen effects on POSS polyimides in low Earth orbit[J].ACS Applied Materials&Interfaces,2012,4(2):492-502.
    [13]Atar N,Grossman E,Gouzman I,et al.Atomic-oxygen-durable and electrically-conductive cnt-poss-polyimide flexible films for space applications[J].ACS Applied Materials&Interfaces,2015,7(22):12047-12056.
    [14]Brunsvold A L,Minton T K,Gouzman I,et al.An investigation of the resistance of polyhedral oligomeric silsesquioxane polyimide to atomic-oxygen attack[J].High Performance Polymers,2004,16(2):303-318.
    [15]Minton T K,Wu B,Zhang J,et al.Protecting polymers in space with atomic layer deposition coatings[J].ACS Applied Materials&Interfaces,2010,2(9):2515-2520.
    [16]王鑫,赵小虎,沈志刚.硅有机物提高航天器树脂材料抗原子氧剥蚀性能[J].宇航学报2006,27(5):1113-1117.[Wang Xin,Zhao Xiao-hu,Shen Zhi-gang.The effects of atomic oxygen on epoxy resin containing organosilicon[J].Journal of Astronautics,2006,27(5):1113-1117.]
    [17]赵小虎,沈志刚,王鑫,等.玻璃纤维复合材料的原子氧剥蚀效应试验研究.宇航学报2006,27(6):1347-1349.[Zhao Xiao-hu,Shen Zhi-gang,Wang Xin,et al.An experimental study of atomic oxygen effects on glass fiber composites[J].Journal of Astronautics,2006,27(6):1347-1349.]
    [18]杨光,黄鹏程.原子氧对紫外光固化有机硅环氧树脂的作用[J].宇航学报,2008,29(6):2036-2040.[Yang Guang,Huang Peng-cheng.Atomic oxygen effects on UV-cured siliconcontaining epoxy resins[J].Journal of Astronautics,2008,29(6):2036-2040.]
    [19]赵臻璐,陈维强,张玉生,等.BHM3碳纤维及其氰酸酯基复合材料耐原子氧侵蚀性能[J].宇航学报,2016,37(5):625-630.[Zhao Zhen-lu,Chen Wei-qiang,Zhang Yu-sheng,et al.Atomic oxygen erosion of BHM3 carbon fiber and carbon fiber/cyanate ester composites[J].Journal of Astronautics,2016,37(5):625-630.]
    [20]Gonzalez R I,Phillips S H,Hoflund G B.In situ oxygen-atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer[J].Journal of Spacecraft and Rockets,2000,37(4):463-467.
    [21]Xing A,Gao Y,Yin J,et al.Preparation and atomic oxygen erosion resistance of silica film formed on silicon rubber by sol–gel method[J].Applied Surface Science,2010,256(20):6133-6138.
    [22]Dever J A.Low Earth orbital atomic oxygen and ultraviolet radiation effects on polymers[R].NASA Technical Memorandum,1991.
    [23]Cooper R,Upadhyaya H P,Minton T K,et al.Protection of polymer from atomic-oxygen erosion using Al2O3atomic layer deposition coatings[J].Thin Solid Films,2008,516(12):4036-4039.
    [24]Huang Y H,Liu J K,Ball I,et al.Organic-inorganic nanohybrid composite as atomic oxygen durable coating[C].The 47th International SAMPE Symposium and Exhibition,Long Beach Convention,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700