石墨炉原子吸收光谱法直接测定铁镍基高温合金中的锡
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of stannum in iron–nickel–base superalloy by graphite furnace atomic absorption spectrometry
  • 作者:张亮亮 ; 雷亚宁
  • 英文作者:ZHANG Liangliang;LEI Yaning;AVIC Metal Test Technology Company Limited;
  • 关键词:石墨炉原子吸收光谱法 ; 铁镍基高温合金 ;
  • 英文关键词:graphite furnace atomic absorption spectrometry;;iron–nickel–base superalloy;;stannum
  • 中文刊名:HXFJ
  • 英文刊名:Chemical Analysis and Meterage
  • 机构:中航金属材料理化检测科技有限公司;
  • 出版日期:2018-03-20
  • 出版单位:化学分析计量
  • 年:2018
  • 期:v.27;No.123
  • 语种:中文;
  • 页:HXFJ201802035
  • 页数:4
  • CN:02
  • ISSN:37-1315/O6
  • 分类号:59-62
摘要
建立石墨炉原子吸收光谱法直接测定铁镍基高温合金中的锡元素。通过研究基体效应、溶样酸、基体改进剂、灰化温度、原子化温度以及不同激发光源类型,确定最佳测定方案:用2 m L盐酸和0.4 m L硝酸溶解合金样品,灰化温度为1 200℃,原子化温度为2 200℃,选用0.003 mg Pd(NO_3)_2和0.03 mg NH_4H_2PO_4作为基体改进剂。在空心阴极灯(HCL)和无极放电灯(EDL)两光源条件下,标准工作曲线的线性相关系数均大于0.999,分别对GBW 01632和GBW 01634的测定结果与认可值进行t检验(α=0.05),均无显著性差异,短期稳定性好(RSD<5.0%,n=8),锡的检出限分别为0.82μg/L(HCL)和0.75μg/L(EDL)。该方法无需萃取或其它复杂的前处理过程,测定结果准确、可靠,可实现铁镍基合金样品中锡的直接测定。
        A method for the direct determination of stannum in iron–nickel–base superalloy by graphite furnace atomic absorption spectrometry was established. The optimum determination method was ensured by studing the matrix effect, dissolved sample acid, matrix modifier, ashing temperature, atomization temperature conditions and the types of different excitation light sources. Alloy samples was dissolved by using 2 m L hydrochloric acid and 0.4 m L nitric acid. Ashing temperature was 1 200℃, atomization temperature was 2 200℃, 0.003 mg Pd(NO_3)_2 and 0.03 mg NH_4 H_2 PO_4 was used as matrix modifier. The linear relative coefficient of the standard working curves were more than 0.999 under the conditions of hollow cathode lamp(HCL) and electrodeless discharge light(EDL) source. There was no significant difference between the detection results of GBW 01632, GBW 01634 and recognized value by t test(α=0.05). The short–term stability was good(RSD<5.0%, n=8), and the detection limit of tin was 0.82 μg/L(HCL) and 0.75 μg/L(HCL), respectively. The method is accurate and reliable without extraction or other complex pretreatment processes, and the direct determination of stannum in iron–nickel–base superalloy samples can be achieved.
引文
[1]奉冬文,郭彧,柳建春.载体沉淀–苯基荧光酮–CTMAB光度法测定合金钢中锡[J].理化检验(化学分册),2004,40(3):174–175.
    [2]方静,葛小鹏.苯基荧光酮光度法测定硅铁合金中痕量锡[J].冶金分析,2000,20(3):60–62.
    [3]曹伟,杨景和,王兴恩,等.三甲氧基苯基荧光酮分光光度法测定锡的研究和应用[J].分析试验室,2004,23(11):39–41.
    [4]郭兴家,徐叔坤,李晓舟,等.萃取分离–石墨炉原子吸收光谱法测定铁镍基高温合金中砷、铅、锡、锑、铋[J].光谱学与光谱分析,2006,26(6):1 167–1 169.
    [5]VICKREY T M,HARRISON G V,RAMELOW G R.Treated graphite surfaces for determination of tin by graphite furnace atomic absorption spectrometry[J].Analytical chemistry,1981,53(11):1 573–1 576.
    [6]郭兴家,刘新.石墨炉原子吸收光谱法测定高纯镍中痕量杂质铅和锡[J].冶金分析,2002,22(6):17–19.
    [7]王丽晖,武吉生,张虹.石墨炉原子吸收光谱法测定生铁中痕量锡[J].冶金分析,2009,29(8):78–80.
    [8]王宝如.空心阴极光谱法分析铁镍基高温合金杂质[J].材料工程,1999(8):41–43.
    [9]亢德华,王铁,于媛君,等.电感耦合等离子体质谱法测定生铁中痕量元素[J].冶金分析,2014,34(8):27–31.
    [10]亢德华,于媛君,王铁,等.电感耦合等离子体质谱法测定铸铁中镁、锡、镧、铈、锑和铅[J].冶金分析,2011,31(6):54–57.
    [11]潘炜娟,金献忠,陈建国,等.高压消解–电感耦合等离子体质谱法测定低合金钢中硼、钛、锆、铌、锡、锑、钽、钨、铅[J].冶金分析,2008,28(12):1–6.
    [12]马冲先,陈忠颖,芮琦.镍基高温合金中痕量元素分析方法研究的最新进展[J].理化检验(化学分册),2013,49(12):1 522–1 531.
    [13]程健.石墨炉原子吸收光谱法测定锌基体物料中微量铊[J].中国无机分析化学,2014,4(2):5–7.
    [14]郭颖,陶美娟,戴亚明.微波消解样品–石墨炉原子吸收光谱法测定高温镍基合金中的痕量银[J].理化检验(化学分册),2015,51(3):317–320.
    [15]刘正,王海舟,李小佳,等.第三液相富集–石墨炉原子吸收光谱法测定高温合金中痕量碲[J].冶金分析,2016,36(5):1–6.
    [16]陈安明.电感耦合等离子体原子发射光谱法测定碳钢及生铁中痕量砷锑铋锡铅[J].冶金分析,2007,27(3):68–70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700