不同灌溉定额对向日葵生物量累积动态及产量构成要素的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic of Biomass, Yield and their Components of Sunflowers under Different Irrigation Modes
  • 作者:徐昭 ; 史海滨 ; 李仙岳 ; 郑倩 ; 倪东宁 ; 刘美含
  • 英文作者:XU Zhao;SHI Haibin;LI Xianyue;ZHENG Qian;NI Dongning;LIU Meihan;College of Water Conservancy and Civil Engineering , Inner Mongolia Agricultural University;
  • 关键词:河套灌区 ; 向日葵 ; 播前灌溉 ; 生物量 ; 隶属函数法
  • 英文关键词:Hetao Irrigation District;;sunflower;;pre-sowing irrigation;;biomass;;subordinate function
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:内蒙古农业大学水利与土木建筑工程学院;
  • 出版日期:2017-03-15
  • 出版单位:灌溉排水学报
  • 年:2017
  • 期:v.36
  • 基金:国家自然科学基金项目(51269015;51539005)
  • 语种:中文;
  • 页:GGPS201703004
  • 页数:6
  • CN:03
  • ISSN:41-1337/S
  • 分类号:22-27
摘要
为探究河套灌区向日葵不同播前灌水量及现蕾—开花期复水对地上生物量累积、分配以及产量构成要素的影响,试验以当地常规灌溉量(播前135 mm,复水90 mm)为对照,设置A1(播前108 mm,复水90 mm)、A2(播前81 mm、复水90 mm)、B1(播前108 mm、复水72 mm)和B2(播前81 mm、复水72 mm)4个处理进行对比研究。结果表明,适当减少播前灌水量,向日葵在开花期生物量累积补偿效应表现显著,且充分复水较限制复水的生物累积量提高16.45%~32.24%。相同播前灌水量下,收获期充分复水处理总生物量高于限制复水处理(P<0.01),不同复水处理收获期籽粒百分比差异显著(P<0.05),且A1处理籽粒占总生物量的百分比最高,达到43.02%。播前适当的减少灌水量(108 mm),充分复水能显著提高(P<0.05)经济产量,而相同播前灌水量下,现蕾—开花期减少灌水量会显著降低经济产量(P<0.05)。采用隶属函数法综合评价不同灌溉下的产量和产量构成要素、灌溉水分生产率等相关指标,得出A1处理最优。A1处理经济产量、灌溉水分生产率分别较CK显著提高8.47%和23.19%,其原因是平均单株实粒数和结实率的显著提高(P<0.05)。研究表明,河套灌区向日葵适宜的灌溉制度为播前灌水108 mm,现蕾-开花期复水90 mm。
        A field experiment was conducted in Hetao Irrigation District to evaluate the effects of different irrigation regimes on biomass accumulation, allocation, and irrigation water-use efficiency in sunflower, including five treatments: local conventional irrigation amount(pre-sowing 135 mm, rewatering 90 mm), A1(pre-sowing 108 mm, rewatering 90 mm), A2(pre-sowing 81 mm, rewatering 90 mm), B1(pre-sowing 108 mm, rewatering 72mm) and B2(pre-sowing 81 mm, rewatering 72 mm), respectively. The results showed that with the proper reduction of pre-sowing irrigation amount, then rewatering, the significant compensation growth was expressed in biomass accumulation of sunflower, and the compensation effect of biomass of full rewatering was 16.45% ~32.24% higher than the deficit rewatering. Under the same amount of pre-sowing irrigation, the final biomass of full rewatering was significantly higher than deficit rewatering in the harvest period, and the percentage of grain were significantly different(P<0.05) among different rewatering treatments in the harvest period. The percentage of grain to final biomass of A1 treatment was the highest, reaching 43.02%. With the proper reduction of pre-sowing irrigation amount(108 mm), then full rewatering, the economic yield were significantly improve(P<0.05).But, under the same pre sowing irrigation level, economic yield of the reduction of rewatering irrigation amount would be significantly reduced during bolls-flowering. Comprehensive evaluation of the effect indexes of correlation on different irrigation modes by subordinate function showed that A1 treatment was optimal. And economic yield and irrigation water-use efficiency of A1 treatment were 8.47% and 23.19% higher than CK, respectively,because the average number of grains per plant and seed-setting rate were significantly increased. Research shows that suitable sunflower irrigation regime is 108 mm of pre-sowing irrigation, and 90 mm of rewatering during bolls-flowering in Hetao Irrigation District.
引文
[1]童文杰.河套灌区作物耐盐性评价及种植制度优化研究[D].北京:中国农业大学,2014.
    [2]张欣娥,孔德胤,仇巧玲,等.河套灌区食用向日葵空壳率高的原因及对策[J].内蒙古气象,2010(3):28-29.
    [3]戴佳信,史海滨,田德龙,等.河套灌区套种粮油作物耗水规律的试验研究[J].灌溉排水学报,2011,30(1):49-53.
    [4]MA X,MA F,LI C,et al.Biomass accumulation,and water-use efficiency in 10 Malus rootstocks under two watering regimes[J].Agroforest Syst,2010,80(2):283-294.
    [5]IKEGAMI M,WHIGHAM DF,WERGER MJA.Optimal biomass allocation in heterogeneous environments in a clonal plant—Spatialdivision of labor[J].Ecological Modelling,2008,213(2):156-164.
    [6]XILOYANNIS C,DICHIO B,NUZZO V,etal.Defence strategies of olive against water stress[J].Acta Horticulturae,1999,(474):423-426.
    [7]GIORIO P,SORRENTINO G,ANDRIAR D′.Stomatal behaviour,leaf water status and photosynthetic response in field-grown olive treesunder water deficit[J].Environmental&Experimental Botany,1999,42(2):95-104.
    [8]云文丽,李建军,侯琼.土壤水分对向日葵生长状况的影响[J].干旱地区农业研究,2014,32(2):186-190.
    [9]孔东.含盐土壤节水灌溉下作物-水-盐响应关系及模型研究[D].呼和浩特:内蒙古农业大学,2004.
    [10]田德龙.河套灌区盐分胁迫下水肥耦合效应响应机理及模拟研究[D].呼和浩特:内蒙古农业大学,2011.
    [11]梁建财,史海滨,李瑞平,等.不同覆盖方式对中度盐渍土壤的改良增产效应研究[J].中国生态农业学报,2015,23(4):416-424.
    [12]韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿抗旱性主成分及隶属函数分析[J].草地学报,2014,14(2):142-146.
    [13]郑捷,李光永,韩振中.中美主要农作物灌溉水分生产率分析[J].农业工程学报,2008,24(11):46-50.
    [14]丁端锋,蔡焕杰,王健,等.玉米苗期调亏灌溉的复水补偿效应[J].干旱地区农业研究,2006,24(3):64-67.
    [15]王蓉,何文寿.向日葵干物质积累及分配特点研究[J].北方园艺,2014,(5):1-6.
    [16]周青云,王仰仁,叶澜涛,等.不同水肥处理下冬小麦干物质积累动态及模型研究[J].麦类作物学报,2013,33(3):555-560.
    [17]彭世彰,徐俊增.农业高效节水灌溉理论与模式[M].第一版.北京:科学出版社,2009:282-287.
    [18]单玉芬,王立坤,马永胜,等.不同水分亏缺对向日葵产量、水分利用效率及经济效益的影响[J].东北农业大学学报,2010,41(7):70-73.
    [19]任新茂,李存东,孙红春,等.水分胁迫对棉花光合产物在下部“-叶系统”中运转分配的影响[J].植物营养与肥料学报麦,2008,14(6):1 149-1 153.
    [20]谷艳芳,丁圣彦,高志英,等.干旱胁迫下冬小麦光合产物分配格局及其与产量的关系[J].生态学报,2010,30(5):1 167-1 173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700