磁悬浮飞轮转子系统动态试验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Analysis and Experiment of Magnetic Suspension Flywheel Rotor System
  • 作者:周元伟 ; 任正义 ; 黄同 ; 马燕芹
  • 英文作者:Zhou Yuanwei;Ren Zhengyi;Huang Tong;Ma Yanqin;College of Mechanical and Electrical Engineering,Harbin Engineering University;Engineering Training National Experimental Teaching Demonstration Center,Harbin Engineering University;Institute of Automation,Chinese Academy of Sciences;
  • 关键词:SAMCEF ; Rotor ; 临界转速 ; 飞轮转子系统 ; 轴心轨迹
  • 英文关键词:flywheel rotor;;critical speed;;stability;;finite element method;;experiment;;vibration
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:哈尔滨工程大学机电工程学院;哈尔滨工程大学工程训练国家级试验教学示范中心;中国科学院自动化研究所;
  • 出版日期:2018-09-25 16:18
  • 出版单位:机械科学与技术
  • 年:2019
  • 期:v.38;No.289
  • 基金:国家“863”高技术研究发展计划项目(2013AA050802)资助
  • 语种:中文;
  • 页:JXKX201903004
  • 页数:7
  • CN:03
  • ISSN:61-1114/TH
  • 分类号:22-28
摘要
以600 Wh飞轮储能系统为研究对象,为计算飞轮转子系统的临界转速分布及评估在高转速下运动稳定性,采用SolidWorks进行三维建模并导入有限元软件SAMCEF Rotor求解其临界转速和模态振型。对飞轮储能系统进行升降速试验采集动态试验数据并通过时域图、频域图、轴心轨迹图进行分析。将有限元分析与试验数据进行对比,结果表明:飞轮转子系统在临界转速时振幅明显大于稳定转速时,在工作转速中,轴心轨迹重复性较好,没有超过气隙值0.3 mm,稳定性良好,为不同储能飞轮转子的改善和设计提供参考和依据。
        Taking the 600 Wh flywheel energy storage system as the research object,in order to calculate the critical rotational speed distribution of the flywheel rotor system and evaluate the stability of the movement at high rotational speed,the SolidWorks was used for 3D modeling and the finite element software SAMCEF Rotor was used to solve the critical rotational speeds and vibration modes. The dynamic experimental data of the flywheel energy storage system were collected and analyzed by the time domain diagram,frequency domain diagram and axial orbit diagram. Comparing the finite element analysis with the experimental data,the results show that the vibration amplitude of the flywheel rotor system at the critical speed is significantly greater than the steady speed; in the working speed,the recurrence of the axial trajectory is good,and it does not exceed the air gap value of 0.3 mm indicating good stability performance,which also provides reference and basis for the future improvement and design of different energy storage flywheel rotors.
引文
[1]朱熀秋,汤延祺.飞轮储能关键技术及应用发展趋势[J].机械设计与制造,2017(1):265-268Zhu H Q,Tang Y Q. Key technologies and application trends of flywheel energy storage system[J]. Machinery Design&Manufacture, 2017(1):265-268(in Chinese)
    [2] Wicki S,Hansen E G. Clean energy storage technology in the making:an innovation systems perspective on flywheel energy storage[J]. Journal of Cleaner Production,2017,162:1118-1134
    [3]刘佩,魏鲲鹏,戴兴建.1 MW/60 MJ飞轮储能系统轴系动力学分析与试验研究[J].储能科学与技术,2017,6(6):1257-1263Liu P,Wei K P,Dai X J. Analysis and experimental study on the shaft of a 1MW/60MJ flywheel energy storage system[J]. Energy Storage Science and Technology,2017,6(6):1257-1263(in Chinese)
    [4]刘坚.储能技术应用潜力与经济性研究[M].北京:中国经济出版社,2016:37-44Liu J. Energy storage application potential and economic evaluation[M]. Beijing:China Economic Publishing House,2016:37-44(in Chinese)
    [5] Somov Y I,Polyntsev O Y. Nonlinear dynamics of a gyroplane rotor[J]. IFAC Proceedings Volumes,2004,37(6):553-558
    [6] Ishida Y,Yamamoto T. Linear and nonlinear rotordynamics:a modern treatment with applications[M]. 2nd ed.Weinheim:Wiley-VCH,2012:4-7,39-45
    [7] Werfel F N,Floegel-Delor U,Riedel T,et al. Towards high-capacity HTS flywheel systems[J]. IEEE Transactions on Applied Superconductivity, 2010,20(4):2272-2275
    [8]张新宾,储江伟,李洪亮,等.飞轮储能系统关键技术及其研究现状[J].储能科学与技术,2015,4(1):55-60Zhang X B,Chu J W,Li H L,et al. Key technologies of flywheel energy storage systems and current development status[J]. Energy Storage Science and Technology,2015,4(1):55-60(in Chinese)
    [9] Strasik M,Hull J R,Mittleider J A,et al. An overview of boeing flywheel energy storage systems with hightemperature superconducting bearings[J].Superconductor Science and Technology, 2010,23(3):034021
    [10]刘静娜.飞轮储能系统电磁轴承-转子动力学特性研究[D].哈尔滨:哈尔滨工程大学,2014Liu J N. Rotordynamic characteristic research for the active magnetic bearing-rotor system of flywheel energy storage system[D]. Harbin:Harbin Engineering University,2014(in Chinese)
    [11]戴兴建,卫海岗,沈祖培.储能飞轮转子轴承系统动力学设计与试验研究[J].机械工程学报,2003,39(4):97-101Dai X J,Wei H G,Shen Z P. Dynamics design and experiment study of the rotor-bearing system of a flywheel energy storage system[J]. Chinese Journal of Mechanical Engineering, 2003,39(4):97-101(in Chinese)
    [12] Pichot M A,Kajs J P,Murphy B R,et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. IEEE Transactions on Magnetics,2001,37(1):318-323
    [13] Staino A,Basu B. Dynamics and control of vibrations in wind turbines with variable rotor speed[J]. Engineering Structures,2013,56:58-67
    [14]周传月.SAMCEF有限元分析与应用实例[M].2版.北京:机械工业出版社,2015:217-253Zhou C Y. SAMCEF finite element analysis and application example[M]. 2nd ed. Beijing:Machinery Industry Press,2015:217-253(in Chinese)
    [15]房建成,张会娟,刘虎.磁悬浮刚性转子系统振动机理分析与动力学建模[J].控制理论与应用,2014,31(12):1707-1713Fang J C,Zhang H J,Liu H. Vibration mechanism analysis and dynamic model development of magnetically suspended rigid rotor system[J]. Control Theory&Applications,2014,31(12):1707-1713(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700