基于轮胎-颗粒流动力学模型的避险车道参数匹配方案研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Truck Escape Ramp Parameters in Tire-particle Simulation Using the Discrete Element Method
  • 作者:刘攀 ; 余强 ; 王文君 ; 赵轩
  • 英文作者:LIU Pan;YU Qiang;WANG Wen-jun;ZHAO Xuan;School of Automobile, Chang'an University;Shanxi Transportation Research Institute;
  • 关键词:交通工程 ; 轮胎-颗粒流模型 ; 离散元法 ; 避险车道 ; 轮胎模型 ; 制动床
  • 英文关键词:traffic engineering;;tire-particle model;;discrete element method;;truck escape ramp;;tire model;;truck arrester bed
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:长安大学汽车学院;山西省交通科学研究院;
  • 出版日期:2019-02-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.186
  • 基金:国家重点研发计划项目(2017YFC0803904);; 中国博士后基金项目(2018T111006,2017M613034);; 陕西省重点产业创新链(群)项目(2018ZDCXL-GY-05-03-01);; 陕西省重点研发计划(重点项目)项目(2018ZDXM-GY-082);; 陕西省创新人才推进计划-青年科技新星项目(2018KJXX-005)
  • 语种:中文;
  • 页:ZGGL201902018
  • 页数:9
  • CN:02
  • ISSN:61-1313/U
  • 分类号:169-177
摘要
为了优化山区公路避险车道参数设计方案,基于离散元基本理论与方法,建立轮胎与避险车道集料颗粒流模型。利用自主研发的轮胎性能测试系统对货车轮胎垂直特性进行了室内台架试验研究,通过检测不同输入条件下的响应,标定了轮胎颗粒流模型细观参数。采用漏斗法测量了避险车道集料休止角,结合离散元颗粒流仿真方法,对集料颗粒流模型表面摩擦因数进行了标定。基于所建立的轮胎与避险车道的集料颗粒流模型,仿真分析了轮胎在避险车道中的行驶过程,模拟了车辆在运行过程中的行驶距离、行驶速度与轮胎转速的变化趋势。在甘肃S308省道K209+400处避险车道进行了实车道路试验,试验结果验证了该仿真方法的正确性。通过所建立的轮胎-颗粒流模型对比分析了不同铺设厚度,不同集料大小下的仿真结果。综合考虑减速效果和施工成本,确立了避险车道铺设厚度、铺设长度、颗粒材料等设计技术参数。研究结果表明:离散元法能够很好地模拟车辆在避险车道中的行驶过程;考虑到颗粒固结等因素,建议避险车道铺设厚度不小于0.8 m;针对行驶速度大于90 km·h~(-1)的载货汽车,避险车道设计长度建议大于130 m;避险车道集料方面,建议选用粒径为1~3 cm且圆度较高的砾石作为路床材料。
        In this study, we determine the parameters of the truck escape ramp. The tire model and truck escape ramp model were established based on the discrete element theory and method. Using the self-designed tire performance testing system, the truck tire vertical stress under different frequencies and amplitudes was tested, and the tire model parameters were simulated and verified. By means of the calibration method, the angle of response was measured and the friction coefficient was verified. Based on the established tire and truck escape ramp model, the vehicle test procedure was simulated with data on the vehicle length, velocity, and tire speed being recorded. To verify the deceleration effect of arrester beds, the vehicle test was conducted on an actual arrester bed located on the S308 line in the Gansu province, China. The results verified the feasibility and effectiveness of the simulation method. Based on the constructed model, simulations of the vehicle test under different arrester bed depths and particle sizes were conducted. The results indicate that the discrete element method can accurately simulate the interaction of the tire with the truck escape ramp. The implication is that the truck escape ramp design is both effective and economical. Coupled with the simulation results, the parameters of the arrester bed's depth, length, and materials were designed. With regards to particle consolidation, the arrester bed's depth is recommended to be greater than 80 cm. For a truck travelling at a speed of 90 km·h~(-1), the simulation and vehicle test results recommend the length of the truck arrester ramp to be greater than 130 m. The test results also reveal that gravel particles with diameters ranging between 1 cm and 3 cm on a smooth surface are the optimal choice of material for the arrester bed.
引文
[1] 梁国华,钱国敏,李瑞,等.基于安全与效率的交通事件下高速公路长大下坡限速值[J].中国公路学报,2015,28(5):117-124. LIANG Guo-hua, QIAN Guo-min, LI Rui, et al. Speed Limit Value Based on Safety and Efficiency for Long and Steep Downhill of Expressway Under Traffic Incident [J]. China Journal of Highway and Transport, 2015, 28 (5): 117-124.
    [2] 闫书明,方磊,马亮,等.避险车道网索吸能系统[J].振动与冲击,2015,34(17):30-37. YAN Shu-ming, FANG Lei, MA Liang, et al. Net Energy Absorption System for a Truck Escape Ramp [J]. Journal of Vibration and Shock, 2015, 34 (17): 30-37.
    [3] 宋灿灿,郭忠印,宋超.紧急避险车道全宽型服务车道设置位置[J].同济大学学报:自然科学版,2016,44(10):1559-1566. SONG Can-can, GUO Zhong-yin, SONG Chao. Location of Full-width Service Lanes on Truck Escape Ramp [J]. Journal of Tongji University: Natural Science, 2016, 44 (10): 1559-1566.
    [4] 李超,王玉兰,王长中.公路避险车道灰色定位评估模型[J].长安大学学报:自然科学版,2012,32(5):39-44. LI Chao, WANG Yu-lan, WANG Chang-zhong. Grey Evaluation Model of Highway Emergency Lane Location [J]. Journal of Chang'an University: Natural Science Edition, 2012, 32 (5): 39-44.
    [5] 雷斌,许金良,辛田,等.重载交通区连续下坡坡度危险度分级研究[J].中国公路学报,2013,26(6):53-58. LEI Bin, XU Jin-liang, XIN Tian, et al. Study on Heavy Traffic Area Risk Levels Classification in Continuous Downhill Slope Section [J]. China Journal of Highway and Transport, 2013, 26 (6): 53-58.
    [6] 张高强,孙传夏,程晓辉,等.基于颗粒流模拟的避险车道制动床长度确定方法[J].公路交通科技,2011,28(10):118-123. ZHANG Gao-qiang, SUN Chuan-xia, CHENG Xiao-hui, et al. Determining Method of Arrested Bed of Truck Escape Ramp Based on Particle Flow Simulation [J]. Journal of Highway and Transportation Research and Development, 2011, 28 (10): 118-123.
    [7] QIN Pin-pin, CHEN Chui-ce, PEI Shi-kang, et al. A PFC2D Model of the Interactions Between the Tire and the Aggregate Filled Arrester Bed on Escape Ramp [J]. Materials Science and Engineering, 2017, 216 (1): 012054.
    [8] 蒋明镜,戴永生,申志福.竖向荷载对月球车行驶性能影响的离散元分析[J].地下空间与工程学报,2015,11(5):1221-1227. JIANG Ming-jing, DAI Yong-sheng, SHEN Zhi-fu. Investigation of the Vertical Load Effects on Lunar Rover Traffic Ability Using DEM [J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (5): 1221-1227.
    [9] 张锐,吉巧丽,张四华,等.轮面曲率半径对沙地刚性轮沉陷性能影响研究[J].农业机械学报,2016,47(11):341-349. ZHANG Rui, JI Qiao-li, ZHANG Si-hua, et al. Effect of Wheel Surface Curvature Radius on Sinkage Performance of Sand Rigid Wheel [J]. Transactions of the Chinese Society for Agriculture Machinery, 2016, 47 (11): 341-349.
    [10] 张锐,罗刚,薛书亮,等.沙地刚性轮构型仿生设计及牵引性能数值分析[J].农业工程学报,2015,31(3):122-128. ZHANG Rui, LUO Gang, XUE Shu-liang, et al. Bionic Design of Configuration of Rigid Wheel Moving on Sand and Numerical Analysis on Its Traction Performance [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (3): 122-128.
    [11] 张锐,吉巧丽,张四华,等.越沙步行轮仿生设计及动力学性能仿真[J].农业工程学报,2016,32(15):26-31. ZHANG Rui, JI Qiao-li, ZHANG Si-hua, et al. Bionic Design and Dynamics Performance Simulation of Walking Wheel to Travel on Sand [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (15): 26-31.
    [12] 赵春来,臧孟炎.基于FEM/DEM的轮胎-沙地相互作用的仿真[J].华南理工大学学报:自然科学版,2015,43(8):75-81. ZHAO Chun-lai, ZANG Meng-yan. Simulation of Tire-sand Interactions Based on FEM/DEM [J]. Journal of South China University of Technology: Natural Science Edition, 2015, 43 (8): 75-81.
    [13] ZHAO C L, ZANG M Y. Application of the FEM/DEM and Alternately Moving Road Method to the Simulation of Tire-sand Interactions [J]. Journal of Terramechanics, 2017, 72: 27-38.
    [14] COETZEE C J. Calibration of the Discrete Element Method and the Effect of Particle Shape [J]. Powder Technology, 2016, 297: 50-70.
    [15] KENARSARI A E, VITTON S J, BEARD J E. Creating 3D Models of Tractor Tire Footprints Using Close-range Digital Photogrammetry [J]. Journal of Terramechanics, 2017, 74: 1-11.
    [16] CUETO O G, CORONEL C E I, BRAVO E L, et al. Modeling in FEM the Soil Pressures Distribution Caused by a Tyre on a Rhodic Ferralsol Soil [J]. Journal of Terramechanics, 2016, 63: 61-67.
    [17] OZAKI S, KONDO W. Finite Element Analysis of Tire Traveling Performance Using Anisotropic Frictional Interaction Model [J]. Journal of Terramechanics, 2016, 64: 1-9.
    [18] NISHIYAMA K, NAKASHIMA H, YOSHIDA T, et al. 2D FE-DEM Analysis of Tractive Performance of an Elastic Wheel for Planetary Rovers [J]. Journal of Terramechanics, 2016, 64: 23-35.
    [19] NISHIYAMA K, NAKASHIMA H, SHIMIZU H, et al. 2D FE-DEM Analysis of Contact Stress and Tractive Performance of a Tire Driven on Dry Sand [J]. Journal of Terramechanics, 2017, 74: 25-33.
    [20] MICHAEL M, VOGEL F, PETERS B. DEM-FEM Coupling Simulations of the Interactions Between a Tire Tread and Granular Terrain [J]. Computer Methods in Applied Mechanics & Engineering, 2015, 289 (47): 227-248.
    [21] 吴跃东,罗如平,王维春.南京地区砂砾卵石土压实特性的离散元模拟[J].中国公路学报,2015,28(4):13-18. WU Yue-dong, LUO Ru-ping, WANG Wei-chun. DEM Simulation on Nanjing Sand-gravel-cobble Mixture Compaction Characteristics [J]. China Journal of Highway and Transport, 2015, 28 (4): 13-18.
    [22] 张锐,韩佃雷,吉巧丽,等.离散元模拟中沙土参数标定方法研究[J].农业机械学报,2017,48(3):49-56. ZHANG Rui, HAN Dian-lei, JI Qiao-li, et al. Calibration Methods of Sandy Soil Parameters in Simulation of Discrete Element Method [J]. Transactions of the Chinese Society for Agriculture Machinery, 2017, 48 (3): 49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700