低温胁迫下6种木兰科植物的生理响应及抗寒相关基因差异表达
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological responses and differential expression of cold resistance-related genes of six varieties of Magnoliaceae under low temperature stress
  • 作者:李瑞雪 ; 金晓玲 ; 胡希军 ; 汪结明 ; 罗峰 ; 张方静
  • 英文作者:LI Ruixue;JIN Xiaoling;HU Xijun;WANG Jieming;LUO Feng;ZHANG Fangjing;Central South University of Forestry and Technology;Hunan University of Science and Technology;Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant of Central South University of Forestry and Technology;
  • 关键词:木兰科 ; 生理响应 ; 抗寒性 ; 基因表达
  • 英文关键词:Magnoliaceae;;physiological responses;;cold tolerance;;gene expression
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中南林业科技大学;湖南科技大学;中南林业科技大学湖南省环境资源植物开发与利用工程技术研究中心;
  • 出版日期:2018-11-12 13:18
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:林业公益性行业科研专项(201404710);; 湖南省“十二五”重点学科(风景园林学)(湘教发[2011]76号)
  • 语种:中文;
  • 页:STXB201908025
  • 页数:16
  • CN:08
  • ISSN:11-2031/Q
  • 分类号:243-258
摘要
分析了6种木兰科植物对低温胁迫的生理响应及耐寒相关调控基因HSP90和WRKY33的差异表达,为木兰科植物抗寒机理的研究和抗寒品种的选育提供理论基础。结果表明,6种木兰科植物的低温LT50在-10.64—-22.06℃,从高到低依次为红花深山含笑、峨眉含笑、杂交含笑、阔瓣含笑、六瓣含笑和乐东拟单性木兰;低温过程中,6种木兰科植物叶片可溶性蛋白(SP)、游离脯氨酸(Pro)含量、超氧化物歧化酶(SOD)和过氧化物歧化酶(POD)活性呈先升高后降低的趋势,可溶性糖(SS)和丙二醛含量(MDA)则不断积累;筛选出REC、MDA、SP、SS和Pro作为6种木兰科植物抗寒性评价的关键指标;聚类分析将6种木兰科植物在抗寒性能上分为强、中、弱三类,分别为乐东拟单性木兰和六瓣含笑,阔瓣含笑、杂交含笑和峨眉含笑,以及红花深山含笑。对HSP90、WRKY33基因的差异表达分析表明,2个基因在6种木兰科植物中的相对表达量呈先升高后降低的趋势,在临近各树种LT 50时,2个基因的表达被强烈抑制且后期表达量不可逆。0℃时,2个基因的表达量差异不显著;-5℃时,2个基因开始被激活,表达量增加;-10℃时,HSP90、WRKY33基因在红花深山含笑叶片中的表达量较-5℃时分别下调了0.76倍和0.68倍,而在其他5个树种中的表达被进一步激活;-15℃时,HSP90和WRKY33基因在抗寒性中等的阔瓣含笑、杂交含笑、峨眉含笑中亦被强烈抑制,较-10℃时分别下调了0.38倍、0.33倍、0.32倍和0.71倍、0.72倍、0.74倍,在抗寒性强的乐东拟单性木兰和六瓣含笑中的表达被进一步激活;-20℃以后,2个基因在6个树种中的表达均被强烈抑制,但在抗寒性最强的乐东拟单性木兰中的表达量仍高于其他5个树种。抗寒基因的激活与表达是影响植物抗寒性的重要因素,抗寒性不同的树种对低温的应答机制明显不同。抗寒性越强的树种越能快速启动低温应答机制,激活抗寒相关基因的表达,进而调整生理生化活动以抵御和适应冷应力。不抗寒树种中抗寒基因的表达则受到抑制,降低了其对低温逆境的耐受能力。
        The physiological response and differential expression of the cold resistance-related genes, Hsp90 and WRKY33, of six varieties of Magnoliaceae under different low temperatures were analyzed in this study, to determine the molecular mechanisms of cold resistance and select cold-resistant Magnoliaceae species. The results showed that the semi-lethal temperature of the six varieties of Magnoliaceae ranged from-22.06 to-10.64℃, ranging from high to low were Michelia maudiae var. rubicunda, M. wilsonii, M. martinii "Tiny" ♀ × M. shiluensis, M. platypetala, M. martinii"Tiny", and Parakmeria lotungensis. During low temperatures, the indexes of soluble protein(SP), proline(Pro), superoxide dismutase(SOD), and Peroxidase(POD) initially increased first and then decreased, whereas those of soluble sugar(SS) and Malonaldehyde(MDA) continued accumulating. Relative electrical conductivity(REC), MDA, SP, SS, and Pro could be used as key indicators for the evaluation of cold resistance of six Magnoliaceae varieties. A cluster analysis of the six Magnoliaceae varieties for cold resistance was divided into strong, medium, and weak three categories, and they were P. lotungensis and M. martinii"Tiny", M. platypetala, M. martinii"Tiny"♀×M. shiluensis and M. wilsonii, and M. maudiae var. rubicunda, respectively. Differential expression analysis revealed that the expression of HSP90 and WRKY33 genes displayed a peak followed by a progressive decline in the six Magnoliaceae varieties. At the semi-lethal temperature of each variety, the expression of both genes was strongly inhibited and irreversible as temperature decreased. There was no significant difference in the expression of both genes between different varieties at 0℃(P>0.05), but they were significantly activated at-5℃. The expression of HSP90 and WRKY33 were downregulated 0.76 and 0.68 times, respectively, than that at-5℃ in M. maudiae var. rubicunda, whereas were further activated in the other five varieties at-10℃. Under low temperature stress at-15℃, HSP90 and WRKY33 expression in the medium cold-tolerant varieties of M. platypetala, M. wilsonii, and M. martinii "Tiny" ♀ × M. shiluensis was strongly inhibited, and the expression of both genes was downregulated 0.38, 0.33, 0.32, and 0.71 times, respectively, and 0.72 and 0.74 in P.lotungensis and M. martinii "Tiny", respectively. Under low temperature stress at-20℃, HSP90 and WRKY33 expression in the leaves of the six Magnoliaceae varieties were all strongly inhibited, but the expression was still higher in the strongest cold resistance variety of P. lotungensis than in the other five varieties. The activation and expression of cold-tolerant genes are important factors affecting the cold resistance of plants. Different varieties showed significantly different response mechanisms to low temperature stress. Stronger cold-tolerant varieties activated the response mechanisms more quickly to low temperature stress. Expression of cold tolerance related genes was activated to adjust the physiological and biochemical activities to resist or adapt to cold stress. However, it was inhibited in the cold-intolerant varieties and significantly decreased their adaptation to cold stress.
引文
[1] 田伟,王素,罗东明.沈阳地区木兰科植物引种栽培试验.辽宁林业科技,2002,(4):8- 10,38- 38.
    [2] 倪荣新,刘本同,秦玉川,邵顺流.10个木兰科树种北移引种试验初报.江西林业科技,2010,(3):5- 6,9- 9.
    [3] 朱仲龙.北京引种红花玉兰的限制因子与越冬防寒技术研究[D].北京:北京林业大学,2012.
    [4] Yang Y,Yao N,Jia Z K,Duan J,Chen F J,Sang Z Y,Ma L Y.Effect of exogenous abscisic acid on cold acclimation in two Magnolia species.Biologia Plantarum,2016,60(3):555- 562.
    [5] Pearce R S.Plant freezing and damage.Annals of Botany,2001,87(4):417- 424.
    [6] Wisniewski M,Bassett C,Arora R.Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of ‘Loring’ peach (Prunus persica).Tree Physiology,2004,24(3):339- 345.
    [7] Zhang X D,Lu C H,Guan Z Y.Weakened cyclones,intensified anticyclones and recent extreme cold winter weather events in Eurasia.Environmental Research Letters,2012,7(4):044044.
    [8] Li W H,Li L F,Ting M F,Liu Y M.Intensification of Northern hemisphere subtropical highs in a warming climate.Nature Geoscience,2012,5(11):830- 834.
    [9] Yang M T,Chen S L,Lin C Y,Chen Y M.Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings.Planta,2005,221(3):374- 385.
    [10] Moellering E R,Muthan B,Benning C.Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane.Science,2010,330(6001):226- 228.
    [11] McCarthy-Suárez I,Gómez M,Del Río L A,Palma J M.Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants.Biologia Plantarum,2011,55(3):485- 492.
    [12] Jena K K,Kim S M,Suh J P,Yang C I,Kim Y J.Identification of cold-tolerant breeding lines by quantitative trait loci associated with cold tolerance in rice.Crop Science,2010,52(2):517- 523.
    [13] Dhanaraj A L,Slovin J P,Rowland L J.Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags.Plant Science,2004,166(4):863- 872.
    [14] Sawicki M,Jeanson E,Celiz V,Clément C,Jacquard C,Vaillant-Gaveau N.Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity.PLoS One,2012,7(10):e46976.
    [15] Rudi H,Sandve S R,Opseth L M,Larsen A,Rognli O A.Identification of candidate genes important for frost tolerance in Festuca pratensis Huds.by transcriptional profiling.Plant Science,2011,180(1):78- 85.
    [16] Winfield M O,Lu C G,Wilson I D,Coghill J A,Edwards K J.Plant responses to cold:transcriptome analysis of wheat.Plant Biotechnology Journal,2010,8(7):749- 771.
    [17] Airaki M,Leterrier M,Mateos R M,Valderrama R,Chaki M,Barroso J B,Del Río L A,Palma J M,Corpas F J.Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress.Plant,Cell & Environment,2012,35(2):281- 295.
    [18] 刘杜玲,张博勇,孙红梅,彭少兵,朱海兰.早实核桃不同品种抗寒性综合评价.园艺学报,2014,42(3):545- 553.
    [19] Skinner D Z,Garland-Campbell K A.The relationship of LT50 to prolonged freezing survival in winter wheat.Canadian Journal of Plant Science,2008,88(5):885- 889.
    [20] Javadian N,Karimzadeh G,Mahfoozi S,Ghanati F.Cold-induced changes of enzymes,proline,carbohydrates,and chlorophyll in wheat.Russian Journal of Plant Physiology,2010,57(4):540- 547.
    [21] 景忆莲,刘耀斌,范万法,校百才.棉花黄萎病及其抗性育种研究进展.西北农业学报,1999,8(3):106- 110.
    [22] 马文涛,樊卫国.贵州野生柑橘的抗寒性测定和综合评价.西北植物学报,2014,34(10):2063- 2069.
    [23] 曾雯,金晓玲,邢文,胡曼筠.9个常绿杂交冬青的抗寒能力比较.植物生理学报,2016,52(1):55- 61.
    [24] 黄浩,周祥斌,欧阳昆唏,李俊成,曾昭佳,陈晓阳.黄梁木种源抗寒性综合评价.华南农业大学学报,2016,37(1):82- 88.
    [25] 叶艳然,王文莉,郑成淑,付德静,刘慧雯.四种野生苔草属植物的耐寒性评价.应用生态学报,2017,28(1):89- 95.
    [26] Liu N,Liu S W,Gan Y D,Zhang Q H,Wang X W,Liu S Y,Dai J L.Evaluation of mercury resistance and accumulation characteristics in wheat using a modified membership function.Ecological Indicators,2017,77:292- 300.
    [27] Shen X H,Li J D,Feng P,Jiang C,Li R L,Zhang H,Jia H B,Zheng H Y,Zhu B G.Root physiological traits and cold hardiness of alfalfa grown alone or mix-sowed with meadow fescue.Acta Agriculturae Scandinavica,2016,67(3):235- 244.
    [28] Baxter A,Mittler R,Suzuki N.ROS as key players in plant stress signalling.Journal of Experimental Botany,2014,65(5):1229- 1240.
    [29] Liu S H,Wang N F,Zhang P Y,Cong B L,Lin X Z,Wang S Q,Xia G M,Huang X H.Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss.Extremophiles,2013,17(3):391- 403.
    [30] Fowler S,Thomashow M F.Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.The Plant Cell,2002,14(8):1675- 1690.
    [31] Laudencia-Chingcuanco D,Ganeshan S,You F,Fowler B,Chibbar R,Anderson O.Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.).BMC Genomics,2011,12:299.
    [32] Xiong H C,Guo H J,Xie Y D,Zhao L S,Gu J Y,Zhao S R,Li J H,Liu L X.RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.Scientific Reports,2017,7:2731.
    [33] Gaete-Loyola J,Lagos C,Beltrán M F,Valenzuela S,Emhart V,Fernández M.Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process.Tree Genetics & Genomes,2017,13(2):37.
    [34] Guerra D,Lamontanara A,Bagnaresi P,Orrù L,Rizza F,Zelasco S,Beghè D,Ganino T,Pagani D,Cattivelli L,Mazzucotelli E.Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.).Tree Genetics & Genomes,2015,11(6):113.
    [35] da Maia L C,Cadore P R B,Benitez L C,Danielowski R,Braga E J B,Fagundes P R R,Magalh?es A M Jr,de Oliveira A C.Transcriptome profiling of rice seedlings under cold stress.Functional Plant Biology,2016,44(4):419- 429.
    [36] Xu W R,Li R M,Zhang N B,Ma F L,Jiao Y T,Wang Z P.Transcriptome profiling of Vitis amurensis,an extremely cold-tolerant Chinese wild Vitis species,reveals candidate genes and events that potentially connected to cold stress.Plant Molecular Biology,2014,86(4/5):527- 541.
    [37] 王亚玲,李勇,张寿洲,崔铁成,巫锡良.木兰科植物的人工杂交.武汉植物学研究,2003,21(6):508- 514.
    [38] 袁帅.木兰科部分含笑属植物繁殖技术研究及园林应用[D].株洲:中南林业科技大学,2014.
    [39] 汪结明,王良桂,朱柯铖杰,魏万亮,韩改改.高压静电场对乐东拟单性木兰插穗生根的影响及其生理机制.安徽农业大学学报,2015,42(5):738- 742.
    [40] 王诗萌.醉香含笑嫩枝扦插繁殖技术的研究[D].哈尔滨:东北林业大学,2016.
    [41] 亓白岩,殷云龙,於朝广,舒璞.木兰科含笑属8种植物叶片解剖结构性状与抗寒性的关系.江苏农业科学,2013,41(4):150- 153.
    [42] 刘艳萍,朱延林,康向阳,张江涛.不同类型广玉兰的抗寒性评价.林业科学,2013,49(6):178- 183.
    [43] 裴文,李鹏,裴海潮,刘增喜,杨秋生.低温条件下9种木兰科植物抗寒性研究.河南农业科学,2014,43(4):101- 105.
    [44] 陆畅,李斌,郑勇奇.低温胁迫下鹅掌楸抗寒性相关基因的差异表达分析.植物资源与环境学报,2015,24(3):25- 31.
    [45] Jiang J J,Ma S H,Ye N H,Jiang M,Cao J S,Zhang J H.WRKY transcription factors in plant responses to stresses.Journal of Integrative Plant Biology,2017,59(2):86- 101.
    [46] Wang Y,Shu Z,Wang W,Jiang X,Li D,Pan J,Li X.CsWRKY2,a novel WRKY gene from Camellia sinensis,is involved in cold and drought stress responses.Biologia Plantarum,2016,60(3):443- 451.
    [47] Wu Y K,Zou C,Fu D M,Zhang W N,Xiao H J.Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete.Insect Science,2016,25(2):273- 283.
    [48] 朱根海,刘祖祺,朱培仁.应用Logistic方程确定植物组织低温半致死温度的研究.南京农业大学学报,1986,9(3):11- 16.
    [49] 陈建勋,王晓峰.植物生理学实验指导(第二版).广州:华南理工大学出版社,2006.
    [50] 张文娥,王飞,潘学军.应用隶属函数法综合评价葡萄种间抗寒性.果树学报,2007,24(6):849- 853.
    [51] 许瑛,陈发棣.菊花8个品种的低温半致死温度及其抗寒适应性.园艺学报,2008,35(4):559- 564.
    [52] 李楠,郑勇奇,丁红梅,柳新红,盛炜彤,江波,李海波.低温胁迫下短枝木麻黄耐寒相关基因的差异表达分析.林业科学,2017,53(7):62- 71.
    [53] 刘艳阳,李俊周,陈磊,崔党群.低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响.麦类作物学报,2006,26(4):70- 73.
    [54] Nasef I N.Short hot water as safe treatment induces chilling tolerance and antioxidant enzymes,prevents decay and maintains quality of cold-stored cucumbers.Postharvest Biology and Technology,2018,138:1- 10.
    [55] Lyons J M,Raison J K.Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury.Plant Physiology,1970,45(4):386- 389.
    [56] Wang J Y,Yu S Q.Studies on resistance and membrane lipid fluidity of various breeds of cold-resistant wheat.Biotechnology,1998,8(2):28- 30,40- 40.
    [57] 姜丽娜,张黛静,宋飞,刘佩,樊婷婷,余海波,李春喜.不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价.生态学报,2014,34(15):4251- 4261.
    [58] Plazek A,Zur I.Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability.Plant Science,2003,164(6):1019- 1028.
    [59] 令凡,焦健,李朝周,金庆轩,赵曼利.不同油橄榄品种对低温胁迫的生理响应及抗寒性综合评价.西北植物学报,2015,35(3):508- 515.
    [60] Rajashekar C,Gusta L,Burke M.Membrane structural transitions:probable relation to frost damage in hardy herbaceous species//Lyons J M,Graham D,Raison J K,eds.Low Temperature Stress in Crop Plants:the Role of The Membrane.Pittsburgh:Academic Press,1979:255- 274.
    [61] 任俊杰,赵爽,李美美,齐国辉,李保国.不同核桃品种抗霜冻能力的评价.林业科学,2014,50(9):67- 72.
    [62] 姚海梅,李永生,张同祯,赵娟,王婵,王汉宁,方永丰.旱-盐复合胁迫对玉米种子萌发和生理特性的影响.应用生态学报,2016,27(7):2301- 2307.
    [63] Heidarvand L,Millar A H,Taylor N L.Responses of the mitochondrial respiratory system to low temperature in plants.Critical Reviews in Plant Sciences,2017,36(4):217- 240.
    [64] Wang D,Xuan J P,Zhu X C,Wen M C,Guo H L,Liu J X.Relationships of freezing tolerance and the contents of carbohydrates,proline,protein in centipedegrass (Eremochloa ophiuroides (Munro.) Hack.).Acta Agrestia Sinica,2010,15(11):7893- 906.
    [65] Longo V,Valizadeh Kamran R,Michaletti A,Toorchi M,Zolla L,Rinalducci S.Proteomic and physiological response of spring barley leaves to cold stress.Int J Plant Biol Res,2017,5(1):1061.
    [66] Wang J M,Yang Y,Liu X H,Huang J,Wang Q,Gu J H,Lu Y M.Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium.BMC Genomics,2014,15:203.
    [67] 王晶懋.野生百合卷丹(Lilium lancifolium)响应低温信号的分子机制研究[D].北京:北京林业大学,2015.
    [68] 刘冰,曹莎,周泓,夏宜平.杜鹃花品种耐寒性比较及其机制研究.园艺学报,2016,43(2):295- 306.
    [69] Patton A J,Cunningham S M,Volenec J J,Reicher Z J.Differences in freeze tolerance of Zoysiagrasses:Ⅱ.Carbohydrate and Proline accumulation.Crop Science,2007,47(5):2170- 2181.
    [70] 王冠群,李丹青,张佳平,夏宜平.德国鸢尾6个品种的耐寒性比较.园艺学报,2014,41(4):773- 780.
    [71] 林善枝,李雪平,张志毅.低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响.林业科学,2002,38(6):137- 141.
    [72] 岳海,李国华,李国伟,陈丽兰,孔广红,梁国平.澳洲坚果不同品种耐寒特性的研究.园艺学报,2010,37(1):31- 38.
    [73] 王兆.低温胁迫对彩叶草的生理效应及抗寒性研究[D].福州:福建农林大学,2014.
    [74] Xin Z G,Browse J.Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant.Proceedings of the National Academy of Sciences of the United States of America,1998,95(13):7799- 7804.
    [75] 李轶冰,杨顺强,任广鑫,冯永忠,张强,李鹏.低温处理下不同禾本科牧草的生理变化及其抗寒性比较.生态学报,2009,29(3):1341- 1347.
    [76] Pociecha E,Dziurka M.Trichoderma interferes with cold acclimation by lowering soluble sugars accumulation resulting in reduced pink snow mould (Microdochium nivale) resistance of winter rye.Environmental and Experimental Botany,2015,109:193- 200.
    [77] 简令成,卢存福,李积宏,Li P H.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础.作物学报,2005,31(8):971- 976.
    [78] 张保青,杨丽涛,李杨瑞.自然条件下甘蔗品种抗寒生理生化特性的比较.作物学报,2011,37(3):496- 505.
    [79] Yang Y,Jia Z K,Chen F J,Sang Z Y,Ma L Y.Comparative analysis of natural cold acclimation and deacclimation of two Magnolia species with different winter hardiness.Acta Physiologiae Plantarum,2015,37(7):129.
    [80] 王志昊,叶冬梅,何炎红,张智慧,张国盛,段国珍.5种沙生植物丙二醛、脯氨酸和2种氧化物酶比较.分子植物育种,2018,16(11):3727- 3731
    [81] Santini J,Giannettini J,Pailly O,Herbette S,Ollitrault P,Berti L,Luro F.Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress.Trees,2013,27(1):71- 83.
    [82] Campos P S,Quartin V N,Ramalho J C,Nunes M A.Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp.plants.Journal of Plant Physiology,2003,160(3):283- 292.
    [83] Hossain Z,López-Climent M F,Arbona V,Pérez-Clemente R M,Gómez-Cadenas A.Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage.Journal of Plant Physiology,2009,166(13):1391- 1404.
    [84] Bonnecarrère V,Borsani O,Díaz P,Capdevielle F,Blanco P,Monza J.Response to photoxidative stress induced by cold in japonica rice is genotype dependent.Plant Science,2011,180(5):726- 732.
    [85] 陈洁,金晓玲,宁阳,沈守云.含笑属植物抗寒生理指标的筛选及评价//中国观赏园艺研究进展.北京:中国林业出版社,2015:547- 550.
    [86] 邓仁菊,范建新,王永清,金吉芬,刘涛.低温胁迫下火龙果的半致死温度及抗寒性分析.植物生理学报,2014,50(11):1742- 1748.
    [87] Wang R H,Zhang Y,Kieffer M,Yu H,Kepinski S,Estelle M.HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1.Nature Communications,2016,7:10269.
    [88] 张艳侠,罗华,侯乐峰,刘霞,郝兆祥,赵丽娜,张立华.五个石榴品种的抗寒性评价.浙江农业学报,2015,27(4):549- 554.
    [89] Ameglio T,Pigeon D,Archilla O,et al.Adaptation to cold temperature and response to freezing in roses.Acta Horticulturae,2015,618(618):344- 356.
    [90] 陈洁,金晓玲,宁阳,伍江波,曾雯,李瑞雪,曹基武.3种含笑属植物抗寒生理指标的筛选及评价.河南农业科学,2016,45(2):113- 118.
    [91] 周建,尤扬,袁德义.低温胁迫对广玉兰生理特性的影响.西北林学院学报,2008,23(6):38- 42.
    [92] Lee B H,Henderson D A,Zhu J K.The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.Plant Cell,2005,17(11):3155- 3175.
    [93] Ashraf M.Inducing drought tolerance in plants:recent advances.Biotechnology Advances,2010,28(1):169- 183.
    [94] Pelham H R B.A regulatory upstream promoter element in the Drosophila Hsp70 heat-shock gene.Cell,1982,30(2):517- 528.
    [95] Baniwal S K,Bharti K,Chan K Y,Fauth M,Ganguli A,Kotak S,Mishra S K,Nover L,Port M,Scharf K D,Tripp J,Weber C,Zielinski D,von Koskull-D?ring P.Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors.Journal of Biosciences,2004,29(4):471- 487.
    [96] Noren L,Kindgren P,Stachula P,Ruhl M,Eriksson M,Hurry V,Strand A.HSP90,ZTL,PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression.Plant Physiology,2016,177(2):1392- 1406.
    [97] Nathan D F,Lindquist S.Mutational analysis of Hsp90 function:interactions with a steroid receptor and a protein kinase.Molecular and Cellular Biology,1995,15(7):3917- 3925.
    [98] Park S,Lee C M,Doherty C J,Gilmour S J,Kim Y,Thomashow M F.Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.The Plant Journal,2015,82(2):193- 207.
    [99] 杨帆,丁菲,杜天真.盐胁迫下构树DREB转录因子基因表达的实时荧光定量PCR分析.林业科学,2010,46(4):146- 150.
    [100] Liu C T,Wu T B,Wang X P.bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stress response in rice.Planta,2012,235(6):1157- 1169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700