基于滑模变结构控制的磁浮列车悬浮控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Suspension Control of Maglev Trains Based on Sliding Mode Variable Structure Control
  • 作者:王成杰 ; 张静 ; 许平洋 ; 王小明 ; 伍星
  • 英文作者:Wang Chengjie;Zhang Jing;Xu Pingyang;Wang Xiaoming;Wu Xing;College of Electrical Engineering,Southwest Jiaotong University;Changsha Rail Transit Operation Co.,Ltd.;
  • 关键词:磁浮列车 ; 悬浮系统 ; 控制算法 ; 滑模变结构控制 ; 控制性能
  • 英文关键词:Maglev train;;suspension system;;control algorithm;;slide mode variable structure control;;control performance
  • 中文刊名:DQZD
  • 英文刊名:Electrical Automation
  • 机构:西南交通大学电气工程学院;长沙市轨道交通集团有限公司;
  • 出版日期:2019-03-30
  • 出版单位:电气自动化
  • 年:2019
  • 期:v.41;No.242
  • 基金:湖南省科技重大专项(2015GK1001ZKT4ZRW2)
  • 语种:中文;
  • 页:DQZD201902026
  • 页数:5
  • CN:02
  • ISSN:31-1376/TM
  • 分类号:90-94
摘要
磁浮列车悬浮控制系统是一个典型的非线性、开环不稳定系统,传统控制是将系统非线性模型在其平衡点位置进行线性化处理,线性化后的模型进行PID控制,设计出的控制器在系统平衡点附近的范围产生控制效果,如果系统受到较大的外部干扰,将失去控制效果。为解决磁悬浮控制系统鲁棒性差和稳定裕度不足的问题,提出一种滑模变结构的控制算法,控制律采用消减抖振的指数趋近律。经过稳定性分析和仿真结果分析比较,得出此滑模控制方法不但具有动态响应快、无超调量以及鲁棒性强等特点,而且控制结构简单易于实现。
        The suspension control system used on Maglev trains is a typical nonlinear, unstable open-loop system. According to traditional control, after the nonlinear model of the system was linearized at its equilibrium point, it was brought to PID-control. The developed controller could produce control effects in the vicinity of the system equilibrium point. Once the system was subjected to severe external interference, the control effect would be lost. To solve the problems of poor robustness and insufficient stability margin of the magnetic suspension control system, a control algorithm of sliding mode variable structure was proposed, whereby the exponential approach law for reduction of chattering was adopted as the control law. Stability analysis and simulation results analysis proved that the proposed sliding control approach was not only characteristic of quick dynamic response, zero overshoot and strong robustness, but also had a simple control structure which was easy to implement.
引文
[1]李莉,孟光.电磁型磁悬浮列车动力学研究综述[J].铁道学报,2003,25(4):110-114.
    [2]李云钢,常文森.磁浮列车悬浮系统的串级控制[J].自动化学报,1999,25(2):247-251.
    [3]黎松奇,张昆仑,刘国清,等.基于逆系统方法的磁浮列车非线性控制[J].控制工程,2017,24(8):1542-1546.
    [4]MACLEOD C,GOODALL R M.Frequency shaping LQ control of Maglev suspension systems for optimal performance with deterministic and stochastic inputs[J].IEEE Proceedings-Control Theory and Applications,1996,143(1):25-30.
    [5]LIN L C,GAU T B.Feedback linearization and fuzzy control for conical magnetic bearings[J].IEEE Transactions on Control Systems Technology,1997,5(4):417-426.
    [6]宋荣荣,陈滋利.磁浮系统中免疫专家PID控制器的改进[J].交通运输工程与信息学报,2014,12(2):13--21.
    [7]陈贵荣.中低速磁浮列车供电系统研究[J]电气化铁道,2007,6(3):15-18.
    [8]江浩,连级三.单磁铁悬浮系统的动态模型与控制[J].西南交通大学学报,1992,83(1):59-67.
    [9]SINHA P K.Electromagnetic suspension:dynamics and control[M].London,United Kingdom:Peter Peregrinus Ltd.,1987.
    [10]刘金锟.滑模变结构控制的MATLAB仿真[M].北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700