TA19闪光焊接焊缝组织优化热变形本构方程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure optimization and constitutive equation based on hot deformation of flash welded TA19 alloy
  • 作者:梁运兴 ; 王龙祥 ; 魏志坚 ; 徐平伟 ; 梁宇
  • 英文作者:LIANG Yun-xing;WANG Long-xiang;WEI Zhi-jian;XU Ping-wei;LIANG Yu;Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials,Guizhou University;National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology;Guizhou Anda Aviation Forging Co Ltd;
  • 关键词:钛合金 ; 闪光焊 ; 热变形 ; 本构方程
  • 英文关键词:titanium alloy;;flash welding;;hot deformation;;constitutive equation
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:贵州大学贵州省材料结构与强度重点实验室;高性能金属结构材料与制造技术国家地方联合工程实验室;贵州安大航空锻造有限责任公司;
  • 出版日期:2019-05-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.227
  • 基金:国家自然科学基金(No.51761003);; 贵州省重大基础研究项目(黔科合JZ字[2014]2003)
  • 语种:中文;
  • 页:JSCL201905017
  • 页数:7
  • CN:05
  • ISSN:11-4545/TG
  • 分类号:154-160
摘要
基于热变形实验,在Gleeble3500热模拟试验机上对TA19闪光焊接试样,在变形温度900~980℃,变形速率0.01~1 s~(-1)以及变形量30%和60%的条件下进行等温恒定速率压缩试验。结果表明:在变形速率0.01 s~(-1),980℃下压缩60%的变形试样经930℃×1 h+590℃×4 h空冷(AC)的再结晶退火后,试样的焊缝组织由魏氏组织向等轴组织转变。采用Deform3D软件对试样焊缝变形过程进行模拟,通过点追踪功能获得试样焊缝位置的真实应变量变化规律。以焊缝真实应变为基础,建立了适用于优化TA19闪光焊接组织的热压缩本构方程。该本构方程与实验结果吻合程度较高,误差约为3.31%。
        Based on the thermal deformation experiment, the isothermal constant rate compression test of TA19 flash welding specimen was carried out under the conditions of deformation temperature of 900-980 ℃, strain rate of 0.01-1 s~(-1) and deformation of 30% and 60% on a Gleeble3500 thermal simulation test machine. The results show that when the sample is compressed at 980 ℃ with deformation of 60% and strain rate of 0.01 s~(-1) and then annealed at 930 ℃ for 1 h and 590 ℃ for 4 h by air cooling, the microstructue of wled seam of the sample changes from Widmannstatten microstructure to equiaxial microstructure. The deformation process of weld seam of the sample was simulated by Deform3 D software, and the true strain law of weld seam position was obtained by point tracing function. Based on the real strain of weld seam, the constitutive equation of hot compression was established for optimizing the microstructure of the TA19 flash welding. The results show that the constitutive equation is in good agreement with the experimental results, and the error is about 3.31%.
引文
[1] Banerjeea D.Perspectives on titanium science and technology[J].Acta Materialia,2013,61(3):844-879.
    [2] Boyer R R,Briggs R D.The use of β titanium alloys in the aerospace industry[J].Journal of Materials Engineering and Performance,2005,14(6):681-685.
    [3] Zhang C Q,Robson J D,Prangnell P B.Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J].Journal of Materials Processing Technology,2016,231:382-388.
    [4] 傅志红,黄明辉,周鹏展,等.搅拌摩擦焊及其研究现状[J].焊接,2002(11):6-10.FU Zhi-hong,HUANG Ming-hui,ZHOU Peng-zhan,et al.Research status of friction stir welding[J].Welding and Joining,2002(11):6-10.
    [5] 杨静,程东海,黄继华,等.TC4钛合金激光焊接接头组织与性能[J].稀有金属材料与工程,2009,38(2):259-262.YANG Jing,CHENG Dong-hai,HUANG Ji-hua,et al.Microstructure and mechanical properties of Ti-6Al-4V joints by laser beam welding[J].Rare Metal Materials and Engineering,2009,38(2):259-262.
    [6] Duan A,Gong S,Liu F.Influence of welding parameters on temperature field characteristics during laser welding of 5A90 by infrared thermograph[J].Transactions of the China Welding Institution,2017,38(11):97-102.
    [7] Shen J,Wei Z,Zhu X,et al.Microstructure evolution and mechanical properties of flash butt-welded Inconel718 joints[J].Materials Science and Engineering:A,2018,718:34-42.
    [8] Zhu X,Xu P,Liang Y,et al.Flash butt weldability of Inconel718 alloy[J].Journal of Materials Processing Technology,2018,258:326-333
    [9] 段园培,黄仲佳,余小鲁,等.基于摩擦修正的TB6合金流变应力行为研究及本构模型建立[J].稀有金属,2014,38(2):202-209.DUAN Yuan-pei,HUANG Zhong-jia,YU Xiao-lu,et al.Flow stress behavior and constitutive model of as-cast TB6 titanium alloy based on friction correction[J].Chinese Journal of Rare Materials.2014,38(2):202-209.
    [10] Zong Y Y,Shan D B,Xu M,et al.Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation[J].Journal of Materials Processing Technology,2009,209(4):1988-1994.
    [11] Prasad Y V R K,Seshacharyulu T.Modelling of hot deformation for microstructural control[J].Metallurgical Reviews,1998,43(6):243-258.
    [12] 王志强,沈健,张新明.Al-Li合金热压缩时的不均匀变形现象[J].稀有金属,1999,23(6):466-470.WANG Zhi-qiang,SHEN Jian,ZHANG Xin-ming.Study on deformation inhomogeneity of Al-Li alloy during hot compression[J].Chinese Journal of Rare Materials,1999,23(6):466-470.
    [13] 于兰兰,毛小南,赵永庆,等.热变形行为与BT22钛合金的组织演变[J].稀有金属材料与工程,2007,36(3):505-508.YU Lan-lan,MAO Xiao-nan,ZHAO Yong-qing,et al.Isothermal behavior and microstructure evolution of BT22 titanium alloy[J].Rare Metal Materials and Engineering,2007,36(3):505-508.
    [14] 梁业,郭鸿镇,刘鸣,等.TA15合金高温本构方程的研究[J].塑性工程学报,2008,15(4):150-154.LIANG Ye,GUO Hong-zhen,LIU Ming,et al.Study on constitutive equations for hot deformation of TA15 alloy[J].Journal of Plasticity Engineering,2008,15(4):150-154.
    [15] Medina S F,Hernandez C A.General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J].Acta Materialia,1996,44(1):137-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700