FVD与FPB在大跨长联减隔震体系梁桥中的联合作用机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Combined Action Mechanism of FVD and FPB in Large-span and Long-unit Bridges with a Seismic Isolation System
  • 作者:刘正楠 ; 陈兴冲 ; 张永亮 ; 丁明波 ; 张熙胤
  • 英文作者:LIU Zhengnan;CHEN Xingchong;ZHANG Yongliang;DING Mingbo;ZHANG Xiyin;College of Civil Engineering, Lanzhou Jiaotong University;
  • 关键词:大跨长联 ; 液体黏滞阻尼器 ; 摩擦摆支座 ; 耗能 ; 联合作用机理
  • 英文关键词:large span and long unit;;fluid viscous damper;;friction pendulum bearing;;energy dissipation;;combined action mechanism
  • 中文刊名:ZBDZ
  • 英文刊名:China Earthquake Engineering Journal
  • 机构:兰州交通大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:地震工程学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(51768036,51808273)
  • 语种:中文;
  • 页:ZBDZ201903011
  • 页数:7
  • CN:03
  • ISSN:62-1208/P
  • 分类号:77-83
摘要
为验证液体黏滞阻尼器(FVD)与摩擦摆支座(FPB)组合在大跨长联减隔震体系梁桥中的应用效果,以一联(50+8×100+50) m预应力混凝土连续梁桥为工程背景,建立全桥有限元模型,通过输入场地地震安评报告提供的50年超越概率为2%的三条人工模拟地震波,开展单独及组合使用液体黏滞阻尼器和摩擦摆支座的大跨长联梁桥减隔震研究,从能量耗散的角度揭示液体黏滞阻尼器与摩擦摆支座组合在大跨长联减隔震体系梁桥中的联合作用机理。结果表明,大跨长联梁桥仅使用黏滞阻尼器,其长周期特性激发黏滞阻尼器充分发挥耗能,但无法避免对固定墩的地震损伤;仅使用摩擦摆支座隔震在纵(横)向强震下会引起支座位移超限;摩擦摆支座与黏滞阻尼器组合的减震机理为摩擦摆支座提供墩梁间的弱连接,激发墩梁间的相对速度,促进黏滞阻尼器(速度型)充分发挥阻尼耗能作用。另外,组合减震方案中摩擦摆支座为辅助耗能装置,黏滞阻尼器为主要耗能装置,且主控梁体位移;相比仅使用摩擦摆支座隔震,由于黏滞阻尼器激发的阻尼力增强了墩梁间约束,这种组合减隔震可能使结构输入能量增加,从而导致地震反应加剧。
        To verify the effect of the application of a fluid viscous damper(FVD) and friction pendulum bearing(FPB) in large-span and long-unit bridges with a seismic isolation system, we established a finite element model of a prestressed-concrete continuous-beam bridge. By inputting three artificial seismic waves with a 50-year exceedance probability of 2%, we conducted an isolation study of the bridge with an individual or combined use of an FVD and FPB. With respect to energy dissipation, we determined the combined action mechanism of an FVD and FPB in large-span and long-unit bridges. The results indicate that if only an FVD is used, the FVD will dissipate energy effectively because of its long-period characteristics, but seismic damage to a fixed pier cannot be avoided. Using only an FPB will cause bearing displacement beyond the design specifications under longitudinal(horizontal) strong earthquakes. The isolation mechanism operating under the combined action of FVD and FPB is that the FPB provides a weak connection between the pier and beam, generates relative velocity between them, and thus facilitates the effective dissipation of energy by the FVD. In addition, the FPB serves as an auxiliary energy dissipation device, with the FVD being the main energy dissipation device controlling the beam displacement. Compared with the use of only the FPB, the combined system may increase the energy input to the structure, thus resulting in an intensified seismic response.
引文
[1] 夏修身,崔靓波,陈兴冲,等.长联大跨连续梁桥隔震技术应用研究[J].桥梁建设,2015,45(4):39-45.XIA Xiushen,CUI Liangbo,CHEN Xingchong,et al.Study of Application of Seismic Isolation Techniques for Long Span and Long Unit Continuous Beam Bridge[J].Bridge Construction,2015,45(4):39-45.
    [2] 贾毅,赵人达,廖平,等.高烈度地震区大跨长联连续梁桥抗震分析及性能评价[J].防灾减灾工程学报,2017,37(4):681-688.JIA Yi,ZHAO Renda,LIAO Ping,et al.Seismic Resistance Analysis and Performance Evaluation of Large Span Continuous Beam Bridge in High Intensity Seismic Region[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):681-688.
    [3] 刘健新,赵国辉.5·12汶川地震典型桥梁震害分析[J].建筑科学与工程学报,2009,26(2):92-97.LIU Jianxin,ZHAO Guohui.Typical Bridge Damage Analysis in “5·12” Wenchuan Earthquake[J].Journal of Architecture and Civil Engineering,2009,26(2):92-97.
    [4] 赵祥,刘忠华,王社良,等.多维地震作用下大跨空间结构的减震控制分析[J].地震工程学报,2018,40(3):398-405.ZHAO Xiang,LIU Zhonghua,WANG Sheliang,et al.Seismic Control Analysis of Large-span Space Structures under Multidimensional Earthquakes[J].China Earthquake Engineering Journal,2018,40(3):398-405.
    [5] 叶爱君,方家欣,张少为,等.小箱梁桥横向减震体系及其耗能特性[J].中国公路学报,2017,30(12):21-29.YE Aijun,FANG Jiaxin,ZHANG Shaowei,et.al.Transverse Seismic System of Multi-box Girder Bridges and Its Energy Dissipation Characteristics[J].China Journal of Highway and Transport,2017,30(12):21-29.
    [6] 阮怀圣,何友娣.两种减隔震支座动力参数的设计方法及减隔震效果差异研究[J].世界地震工程,2017,33(1):223-229.RUAN Huaisheng,HE Youdi.Research on Dynamic Parameter Design Method of Two Kinds of Base Isolation Bearing and Their Effect Difference[J].World Earthquake Engineering,2017,33(1):223-229.
    [7] 杨华平,钱永久,樊启武,等.大跨铁路钢桁连续梁桥减隔震方案比较研究[J].地震工程学报,2017,39(6):1097-1104.YANG Huaping,QIAN Yongjiu,FAN Qiwu,et.al.Comparative Study on Seismic Mitigation and Isolation Schemes for a Long-span Railway Steel Truss Continuous Beam Bridge[J].China Earthquake Engineering Journal,2017,39(6):1097-1104.
    [8] 王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.WANG Zhiqiang,HU Shide,FAN Lichu.Research on Viscous Damper Parameters of Donghai Bridge[J].China Journal of Highway and Transport,2005,18(3):37-42.
    [9] 赵桂峰,马玉宏,简涛,等.摩擦摆支座性能劣化对港珠澳隔震桥梁全寿命期抗震性能的影响[J].中国公路学报,2016,29(12):10-16.ZHAO Guifeng,MA Yuhong,JIAN Tao,et al.Effects of Performance Deterioration of Friction Pendulum Bearings on Seismic Behavior of Hong Kong-Zhuhai-Macao Isolated Bridges in Life-cycle Period[J].China Journal of Highway and Transport,2016,29(12):10-16.
    [10] LUU M,MARTINEZ-RODRIGO M D,ZABEL V,et al.Semi-Active Magnetorheological Dampers for Reducing Response of High-speed Railway Bridges[J].Control Engineering Practice,2014,32:147-160.
    [11] BILLAH A H M M,ALAM M S.Probabilistic Seismic Risk Assessment of Concrete Bridge Piers Reinforced with Different Types of Shape Memory Alloys[J].Engineering Structures,2018,162:97-108.
    [12] NUZZO I,CATERINO N,MADDALONI G,et al.Smart Hybrid Isolation of a Case Study Highway Bridge Exploiting Seismic Early Warning Information[J].Engineering Structures,2017,147:134-147.
    [13] RAHMAN BHUIYAN A,ALAM M S.Seismic Performance Assessment of Highway Bridges Equipped with Superelastic Shape Memory Alloy-Based Laminated Rubber Isolation Bearing[J].Engineering Structures,2013,49:396-407.
    [14] 石岩,王东升,孙治国.近断层地震动下减隔震桥梁地震反应分析[J].桥梁建设,2014,44(3):19-24.SHI Yan,WANG Dongsheng,SUN Zhiguo.Analysis of Seismic Response of Seismically Mitigated and Isolated Bridge Subjected to Near-Fault Ground Motion[J].Bridge Construction,2014,44(3):19-24.
    [15] 刘正楠,陈兴冲,马华军,等.高速铁路大跨长联连续梁桥减隔震方案优化研究[J].世界地震工程,2017,33(4):129-135.LIU Zhengnan,CHEN Xingchong,MA Huajun,et al.Optimization Research on the Seismic Isolation Schemes of a Long Unit and Large Span Continuous Bridge on High-speed Railway[J].World Earthquake Engineering,2017,33(4):129-135.
    [16] 李建中,汤虎,管仲国.中小跨径板式橡胶支座梁桥新型隔震系统[J].中国公路学报,2015,28(3):35-43.LI Jianzhong,TANG Hu,GUAN Zhongguo.A new Isolation System for Small and Medium Span Bridges on Laminated Rubber Bearings[J].China Journal of Highway and Transport,2015,28(3):35-43.
    [17] 李健宁,虞庐松.液体粘滞阻尼器配合双曲面球型支座在大跨连续梁桥中的减隔震研究[J].兰州交通大学学报,2016,35(1):94-99.LI Jianning,YU Lusong.Research on Seismic Isolation Technology of Fluid Viscous Damper with Double Spherical Seismic Bearing in Large-span Continuous Girder Bridge[J].Journal of Lanzhou Jiaotong University,2016,35(1):94-99.
    [18] PARK S W,GHASEMI H,SHEN J,et al.Simulation of the Seismic Performance of the Bolu Viaduct Subjected to Near-fault Ground Motions [J].Earthquake Engineering and Structural Dynamics,2004,33(13):1249-1270.
    [19] 陈永祁,马良喆.桥梁地震保护系统[M].北京:中国铁道出版社,2012.CHEN Yongqi,MA Liangzhe.Performance of Seismic Isolation and Energy Dissipation Hardware[M].Beijing:China Railway Press,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700