原位生成铁基复合材料中TiB_2的三维形貌重构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reconstruction of 3D Morphology of TiB_2 in In Situ Fe Matrix Composites
  • 作者:王宝刚 ; 易红亮 ; 王国栋 ; 骆智超 ; 黄明欣
  • 英文作者:WANG Baogang;YI Hongliang;WANG Guodong;LUO Zhichao;HUANG Mingxin;State Key Laboratory of Rolling Technology and Automation, Northeastern University;Department of Mechanical Engineering, The University of Hong Kong;Shenzhen Institute of Research and Innovation, The University of Hong Kong;
  • 关键词:铁基复合材料 ; 增强相TiB2 ; 三维形貌 ; 初生相 ; 共晶相
  • 英文关键词:Fe matrix composite;;reinforced phase TiB2;;three-dimensional morphology;;primary phase;;eutectic phase
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:东北大学轧制技术及连轧自动化国家重点实验室;香港大学机械工程系;香港大学深圳研究院;
  • 出版日期:2019-01-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目Nos.51722402和U1560204;; 中央高校基本科研业务费专项资金项目No.N170705001~~
  • 语种:中文;
  • 页:JSXB201901012
  • 页数:8
  • CN:01
  • ISSN:21-1139/TG
  • 分类号:137-144
摘要
采用腐蚀法和计算机辅助设计(Creo Parametric)技术重构了原位生成Fe-TiB_2复合材料中增强相TiB_2在铁素体基体中的三维形貌,利用OM和SEM对增强相TiB_2的二维形貌和三维形貌进行比对分析,并结合压缩实验重新诠释了该材料的断裂机理。结果表明:单晶TiB_2初生相为六边形端面的八面体棱柱结构,多由2个或多个尺寸不一的单晶棱柱交错贯穿组成,其空间位置杂乱无章;共晶相TiB_2由瓣状/细柱状相和枝晶状相组成。Fe-TiB_2复合材料在承受载荷时,瓣状/细柱状和枝晶状共晶相相较于初生相TiB_2更容易发生脆断,成为材料断裂失效的主要诱因。二维微观组织观察到的小颗粒TiB_2相在实际空间中并不存在,通过控制凝固过程获得真正三维空间上的小颗粒TiB_2相对该复合材料的性能至关重要。
        TiB_2strengthened Fe matrix composites(Fe-TiB_2) are potential lightweight materials for lightweight structure materials as they possess high modulus, low density, high strength and good ductility. More importantly, Fe-TiB_2 composite can be produced by eutectic solidification, which is suitable for massive production using thin slab casting and strip casting in the steel industry. The microstructure of Fe-TiB_2 composite is composed of ferrite matrix, primary TiB_2 and eutectic TiB_2 reinforcements. Ceramic TiB_2 is a hard brittle phase and it is easy to generate stress concentration when bearing load. The shape and size of Ti B2 can affect the mechanical properties of Fe-TiB_2 composite and the formability of sheet metal. The morphology and size of TiB_2 reinforcements are commonly observed using optical or electron microscope, which can only provide two-dimensional(2D) cross-section of the reinforcements. Nevertheless, the Ti B2 particles have various aspect ratios in three-dimensional(3D) space, which have not yet been well investigated. The present work proposes a new method combining deep etching and computer aided design(Creo Parametric) technology to reconstruct the 3D morphology of TiB_2 reinforcements in the Fe-TiB_2 composites. The OM, SEM were used to compare and analyze the 2D and 3D morphologies of the TiB_2 reinforcements. The fracture mechanism of the Fe-TiB_2 composite was reinterpreted by compression test. The results indicated that the primary TiB_2 reinforcements have an octahedral prism structure, which is mostly composed of two or even more single crystal prisms, and are randomly distributed in the matrix without preferred orientations. The eutectic TiB_2 reinforcements consist of lamelliform/fine columnar phase and dendrite phase. The lamelliform/fine columnar and dendrite eutectic phase in Fe-TiB_2 composite are more prone to brittle fracture than the primary phase TiB_2 during loading. Therefore, it is the main cause of fracture failure of the material during loading. The small Ti B2 particles observed by 2D microstructure do not exist in real 3D space. It is proposed that small and spherical TiB_2 particles are preferred and could be produced by controlling solidification process.
引文
[1] Rana R. High modulus steels[J]. Can. Metall. Quart., 2014, 53:241
    [2] Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84:937
    [3] Bonnet F, Daeschler V, Petitgand G. High modulus steels:New requirement of automotive market. How to take up challenge[J].Can. Metall. Quart., 2014, 53:243
    [4] Kulikowski Z, Godfrey T M T, Wisbey A, et al. Mechanical and microstructural behaviour of a particulate reinforced steel for structural applications[J]. Mater. Sci. Technol., 2000, 16:1453
    [5] Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol.,2018, 34:1112
    [6] Anal A, Bandyopadhyay T K, Das K. Synthesis and characterization of TiB2-reinforced iron-based composites[J]. J. Mater. Process.Technol., 2006, 172:70
    [7] Li B H, Liu Y, He L, et al. Fabrication of in situ TiB2reinforced steel matrix composite by vacuum induction melting and its microstructure and tensile properties[J]. Int. J. Cast Met. Res., 2010, 23:211
    [8] LüW J, Zhang X N, Zhang H, et al. Growth mechanism of reinforcement in in situ processed TiB/Ti composites[J]. Acta Metall.Sin., 2000, 36:104(吕维洁,张晓农,张获等.原位合成TiB/Ti基复合材料增强体的生长机制[J].金属学报, 2000, 36:104)
    [9] Kuang J C, Fu H G. Mechanical properties and wear resistance of In-situ synthesized(TiB2+Fe2B)/ferro-base composites[J]. Lubr.Eng., 2007, 32(8):81(匡加才,符寒光.原位合成(TiB2+Fe2B)/铁基复合材料的力学性能和耐磨性[J].润滑与密封, 2007, 32(8):81)
    [10] Zhang F, Li X D. Computer simulation of microstructure for metal matrix composites[J]. Chin. J. Nonferrous Met., 2014, 24:97(张赋,李旭东.金属基复合材料微观组织结构的计算机模拟[J].中国有色金属学报, 2014, 24:97)
    [11] Luo Z C, He B B, Li Y Z, et al. Growth mechanism of primary and eutectic TiB2particles in a hypereutectic steel matrix composite[J]. Metall. Mater. Trans., 2017, 48A:1981
    [12] Akhtar F. Ceramic reinforced high modulus steel composites:Processing, microstructure and properties[J]. Can. Metall. Quart.,2014, 53:253
    [13] Feng Y J. Strengthening of steels by ceramic phases[D].Westf?lischen:RWTH Aachen University, 2013
    [14] Chen S, Seda P, Krugla M, et al. High-modulus steels reinforced with ceramic particles through ingot casting process[J]. Mater.Sci. Technol., 2016, 32:992
    [15] Springer H, Fernandez R A, Duarte M J, et al. Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2[J]. Acta Mater.,2015, 96:47
    [16] Zhang H, Springer H, Aparicio-Fernández R, et al. Improving the mechanical properties of Fe-TiB2high modulus steels through controlled solidification processes[J]. Acta Mater., 2016, 118:187
    [17] Aparicio-Fernández R, Springer H, Szczepaniak A, et al. In-situ metal matrix composite steels:Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2particle containing high modulus steels[J]. Acta Mater., 2016, 107:38
    [18] Tanaka K, Saito T. Phase equilibria in TiB2-reinforced high modulus steel[J]. J. Phase Equilib., 1999, 20:207
    [19] Wu R J. The present condition and prospects on metal matrix composites[J]. Acta Metall. Sin., 1997, 65:78(吴人洁.金属基复合材料的现状与展望[J].金属学报, 1997,65:78)
    [20] Ma Z Y, Bi J, LüY X, et al. On the in situ forming Ti B2reinforced Al composite[J]. Acta Metall. Sin., 1992, 28(9):87(马宗义,毕敬,吕毓雄等.原位生长Ti B2增强Al复合材料的研究[J].金属学报, 1992, 28(9):87)
    [21] Huang M X, He B B, Wang X, et al. Interfacial plasticity of a Ti B2-reinforced steel matrix composite fabricated by eutectic solidification[J]. Scr. Mater., 2015, 99:13
    [22] Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-Ti B2obtained by eutectic solidification[J]. Acta Mater., 2012, 60:6382
    [23] Yang N, Sinclair I. Fatigue crack growth in a particulate Ti B2-reinforced powder metallurgy iron-based composite[J]. Metall. Mater.Trans., 2003, 34A:2017
    [24] Llorca J. An analysis of the influence of reinforcement fracture on the strength of discontinuously-reinforced metal-matrix composites[J]. Acta Metall. Mater., 1995, 43:181
    [25] Bacon D H, Edwards L, Moffatt J E, et al. Synchrotron X-ray diffraction measurements of internal stresses during loading of steelbased metal matrix composites reinforced with TiB2particles[J].Acta Mater., 2011, 59:3373
    [26] Li Y Z, Luo Z C, Yi H L, et al. Damage mechanisms of a TiB2-reinforced steel matrix composite for lightweight automotive application[J]. Metall. Mater. Trans., 2016, 3E:203
    [27] Hadjem-Hamouche Z H, Chevalier J P, Cui Y T, et al. Deformation behavior and damage evaluation in a new titanium diboride(TiB2)steel-based composite[J]. Steel Res. Int., 2012, 83:538
    [28] Dammak M, Ksaeir I, Brinza O, et al. Experimental analysis of damage of Fe-TiB2metal matrix composites under complex loading[A]. 21ème Congrès Fran?ais de Mécanique[C]. Bordeaux:IRevues, 2013:1
    [29] He L, Liu Y, Li J, et al. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron FeB alloys[J]. Mater. Des., 2012, 36:88
    [30] Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2[J]. Acta Mater., 2015, 98:297
    [31] Springer H, Baron C, Szczepaniak A, et al. Stiff, light, strong and ductile:Nano-structured high modulus steel[J]. Sci. Rep., 2017,7:2757

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700