光学适配体传感器在赭曲霉毒素A检测中的应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the application of optical aptasensors in detecting ochratoxin A
  • 作者:田风玉 ; 周静 ; 何悦 ; 焦必宁
  • 英文作者:TIAN Fengyu;ZHOU Jing;HE Yue;JIAO Bining;Citrus Research Institute,Southwest University;Quality Supervision and Testing Centre for Citrus and Seedling,Ministry of Agriculture;
  • 关键词:适配体 ; 光学传感器 ; 赭曲霉毒素A
  • 英文关键词:aptamer;;oiptical sensors;;ochratoxin A
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:西南大学柑桔研究所;农业部柑桔及苗木质量监督检验测试中心;
  • 出版日期:2018-10-31 11:28
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.376
  • 基金:国家自然科学基金(21405125);; 国家现代农业(柑桔)产业技术体系建设项目(CARS-26);; 国家农产品质量安全风险评估重大专项(GJFP2018013,GJFP2018004,GJFP2017013,GJFP2017004)
  • 语种:中文;
  • 页:SPFX201904038
  • 页数:9
  • CN:04
  • ISSN:11-1802/TS
  • 分类号:246-253+266
摘要
赭曲霉毒素A(ochratoxin A,OTA)是一类主要由曲霉属和青霉属等真菌产生的次级代谢产物。毒理学研究表明,OTA具有强烈的肝毒性和肾毒性,并有致畸、致癌、致突变等危害。OTA作为一种天然污染物,对食品污染的范围较广,主要包括谷类、咖啡、葡萄等及其相关产品,因此,开发高灵敏、高准确性的OTA检测技术对于预防控制其危害具有重要的意义。传统的OTA检测方法通常耗时费力且价格昂贵,限制了它们的应用范围。新兴的光学适配体传感器在检测OTA方面具有灵敏度高、选择性好和操作简单等优点,引起了人们的广泛关注。该文综述了近年来光学适配体传感器在OTA快速检测领域的应用及不同类型的OTA适体传感器的优缺点,并对该领域未来的发展方向进行了讨论和展望。
        Ochratoxin A( OTA) is a secondary metabolite mainly produced by Aspergillus and Penicillium species. It is highly hepatotoxic,renal toxic,teratogenic,carcinogenic,and also mutagenic etc. As a natural pollutant,OTA causes a wide range of food contamination,including cereals,coffee,grapes,and their related products.Therefore,developing a highly sensitive and accurate OTA detection technology is important for preventing and controlling its harm to human. Traditional OTA detection methods are time-consuming,labor-intensive and expensive,which limit their application. The emerging optical aptasensors have distinctive advantages,including high sensitivity,selectivity and simplicity etc.,which have caused widespread concern. In this review,applications of developed optical aptasensors for rapid OTA detection in recent years have been investigated. The advantages and disadvantages of different types of OTA optical aptasensors had also been highlighted. This review also took the future development direction in this field into consideration.
引文
[1]PAGKALI V,PETROU P S,SALAPATAS A,et al.Detection of ochratoxin A in beer samples with a labelfree monolithically integrated optoelectronic biosensor[J].Journal of Hazardous Materials,2017,323(PtA):75-83.
    [2]SUN Aili,ZHANG Yanfang,SUN Goupeng,et al.Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction[J].Biosens and Bioelectron,2017,89(Pt1):659-665.
    [3]TIAN Jiuying,WEI Wenqi,WANG Jiawen,et al.Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A[J].Analytica Chimica Acta,2018,1000:265-272.
    [4]ZHAO Yangyang,LIU Renjie,SUN Wenyi,et al.Ochratoxin A detection platform based on signal amplification by Exonuclease III and fluorescence quenching by gold nanoparticles[J].Sensors and Actuators B:Chemical,2018,255(Pt2):1 640-1 645.
    [5]LIU Liqiang,XU Liguang,SURYOPRABOWO S,et al.Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine[J].Food and Agricultural Immunology,2017(1):1-11.
    [6]DAWLATANA M,COKER R D,NAGLER M J,et al.A normal phase HPTLC method for the quantitative determination of ochratoxin A in rice[J].Chromatographia,1996,42(1-2):25-28.
    [7]HUANG L C,ZHENG N,ZHENG B Q,et al.Simultaneous determination of aflatoxin M1,ochratoxin A,zearalenone and alpha-zearalenol in milk by UHPLC-MS/MS[J].Food Chemistry,2014,146:242-249.
    [8]AL-TAHER F,BANASZEWSKI K,JACKSON L,et al.Rapid method for the determination of multiple mycotoxins in wines and beers by LC-MS/MS using a stable isotope dilution assay[J].Journal of Agricultural and Food Chemistry,2013,61(10):2 378-2 384.
    [9]HASHKAVAYI A B,RAOOF J B.Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@Si O2/DABCO modified screen printed electrode for highly selective detection of epirubicin[J].Biosens and Bioelectron,2017,91:650-657.
    [10]TAGHDISI S M,DANESH N M,RAMEZANI M,et al.Asimple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on target-induced conformational change of complementary strand of aptamer and silica nanoparticles[J].Sensors and Actuators B:Chemical,2018,256:472-478.
    [11]CRUZ-AGUADO J A,PENNER G.Fluorescence polarization based displacement assay for the determination of small molecules with aptamers[J].Analytical Chemistry,2008,80(22):8 853-8 855.
    [12]SHARMA R,RAGAVAN K V,Thakur M S,et al.Recent advances in nanoparticle based aptasensors for food contaminants[J].Biosensors and Bioelectronics,2015,74:612-627.
    [13]YU Mengqun,WANG Hong,FU Fei,et al.Dualrecognition forster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles[J].Analytical Chemistry,2017,89(1):4 085-4 090.
    [14]LV Xin,ZHANG Yuanfu,LIU Guofu,et al.Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles[J].RSC Advances,2017,7(27):16 290-16 294.
    [15]CHEN Yiping,XIANYU Yunlei,SUN Jiashu,et al.Onestep detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads[J].Nanoscale,2016,8(2):1 100-1 107.
    [16]LU Zhingsong,CHEN Xuejuan,HU Weihua.Afluorescence aptasensor based on semiconductor quantum dots and MoS2nanosheets for ochratoxin A detection[J].Sensors and Actuators B-Chemical,2017,246:61-67.
    [17]ZHENG Xinting,ANANTHANARAYANAN A,LUO K Q,et al.Glowing graphene quantum dots and carbon dots:Properties,syntheses,and biological applications[J].Small,2015,11(14):1 620-1 636.
    [18]WANG Song,ZHANG Yajun,PANG Guangsheng,et al.Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor[J].An Alytical Chemistry,2017,89(3):1 704-1 709.
    [19]YAN Xu,LI Hongxia,HAN Xiaosong,et al.A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect[J].Biosensors and Bioelectronics,2015,74:277-283.
    [20]LV Lei,LI Donghao,CUI Chengbi,et al.Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring[J].Biosens and Bioelectron,2017,87:136-141.
    [21]FENG Chunjing,DAI Shang,WANG Lei.Optical aptasensors for quantitative detection of small biomolecules:A review[J].Biosens and Bioelectron,2014,59:64-74.
    [22]LV Lei,LI Dongchao,LIU Renjie,et al.Label-free aptasensor for ochratoxin A detection using SYBR Gold as a probe[J].Sensors and Actuators B-Chemical,2017,246:647-652.
    [23]LUO Lan,XU Fengzhou,SHI Hui,et al.Label-free and sensitive assay for deoxyribonuclease I activity based on enzymatically-polymerized superlong poly(thymine)-hosted fluorescent copper nanoparticles[J].Talanta,2017,169:57-63.
    [24]SONG Chunxia,HONG Wenwen,ZHANG Xiaoyu,et al.Label-free and sensitive detection of Ochratoxin A based on ds DNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification[J].Analyst,2018,143(8):1 829-1 834.
    [25]WANG Shuqin,DENG Wenfang,YANG Lu,et al.Copperbased metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus[J].ACS Applied Materials&Interfaces,2017,9(29):24 440-24 445.
    [26]BALA R,SHARMA R K,WANGOO N.Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate[J].Analytical and Bioanalytical Chemistry,2016,408(1):333-388.
    [27]LUAN Yunxia,CHEN Jiayi,LI Cheng,et al.Highly sensitive colorimetric detection of ochratoxin A by a labelfree aptamer and gold nanoparticles[J].Toxins(Basel),2015,7(12):5 377-5 385.
    [28]YIN Xueting,WANG Sai,LIU Xiaoyun,et al.Aptamerbased colorimetric biosensing of Ochratoxin A in fortified white grape wine sample using unmodified gold nanoparticles[J].Analytical Sciences,2017,33(6):659-664.
    [29]XIAO Rongping,WANG Daifang,LIN Zhenyu,et al.Disassembly of gold nanoparticle dimers for colorimetric detection of ochratoxin A[J].Analytical Methods,2015,7(3):842-845.
    [30]LIN Cuiying,ZHENG Huixia,SUN Mi,et al.Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome[J].Analytica Chimica Acta,2018,1002:90-96.
    [31]ZHOU Lu,SUN Na,XU Lijun,et al.Dual signal amplification by an“on-command”pure DNA hydrogel encapsulating HRP for colorimetric detection of ochratoxin A[J].RSC Advances,2016,6(115):114 500-114 504.
    [32]WU Shijia,DUAN Nuo,QIU Yueting,et al.Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using Zn Fe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J].International Journal of Food Microbiology,2017,261:42-48.
    [33]WANG Chengqun,QIAN Jing,WANG Kun,et al.Colorimetric aptasensing of ochratoxin A using Au@Fe3O4nanoparticles as signal indicator and magnetic separator[J].Biosens and Bioelectron,2016,77:1 183-1 191.
    [34]ZHOU Xingxing,GUO Shijing,GAO Jiaxi,et al.Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases[J].Biosens Bioelectron,2017,98:83-90.
    [35]YANG Cheng,LATES V,PRIETO-SIMON B,et al.Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine[J].Talanta,2013,116:520-526.
    [36]JIANG Chang,KAN Yingya,JIANG Jianhui,et al.Asimple and highly sensitive DNAzyme-based assay for nicotinamide adenine dinucleotide by ligase-mediated inhibition of strand displacement amplification[J].Analytica Chimica Acta,2014,844:70-74.
    [37]LEE J,JEON C H,AHN S J,et al.Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin[J].The Analyst,2014,139(7):1 622-1 627.
    [38]WANG Chengke,DONG Xiaoya,LIU Qian,et al.Labelfree colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction[J].Analytica Chimica Acta 2015,860:83-88.
    [39]ZHOU Zhou,HAO Nan,ZHANG Ying,et al.A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation[J].Chem Commun(Camb),2017,53(52):7 096-7 099.
    [40]JO E J,MUN H,KIM S J,et al.Detection of ochratoxin A(OTA)in coffee using chemiluminescence resonance energy transfer(CRET)aptasensor[J].Food Chemistry,2016,194:1 102-1 107.
    [41]SHEN Peng,LI Wei,LIU Yan,et al.High-throughput lowbackground G-quadruplex aptamer chemiluminescence assay for ochratoxin A using a single photonic crystal microsphere[J].Analytical Chemistry,2017,89(21):11 862-11 868.
    [42]LIN Yanna,DAI Yuxue,SUN Yuanling,et al.A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminolaptamer conjugates[J].Talanta,2018,182:116-124.
    [43]CHEN Ailiang,YANG Shuming.Replacing antibodies with aptamers in lateral flow immunoassay[J].Biosensors and Bioelectronics,2015,71:230-242.
    [44]ZHANG Guilan,ZHU Chao,HUANG Yafei,et al.A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples[J].Molecules,2018,23(2):1-12.
    [45]WANG Wenbin,WANG Weiwei,LIU Liqiang,et al.Nanoshell-enhanced raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing[J].ACS Appl Mater Interfaces,2016,8(24):15 591-15 597.
    [46]GILLIBERT R,TRIBA M N,LAMY LE LA CHAPELLEM.Surface enhanced Raman scattering sensor for highly sensitive and selective detection of ochratoxin A[J].The Analyst,2017,143(1):339-345.
    [47]HOA X D,KIRK A G,TABRIZIAN M.Towards integrated and sensitive surface plasmon resonance biosensors:a review of recent progress[J].Biosens and Bioelectron,2007,23(2):151-160.
    [48]PARK J H,BYUN J Y,JANG H,et al.A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection[J].Biosens and Bioelectron,2017,97:292-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700