运动激活自噬对小鼠骨骼肌抗氧化防御功能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Exercise Induced Autophagy on Antioxidant Defense Function of Skeletal Muscles in Mice
  • 作者:王平 ; Chun-Guang ; LI ; 崔迪 ; 邱守涛 ; 漆正堂 ; 李娅晖 ; 丁树哲
  • 英文作者:Wang Ping;Chun-Guang LI;Cui Di;Qi Zhengtang;Qiu Shoutao;Li Yahui;Ding Shuzhe;School of Physical Education and Health,Hangzhou Normal University;National Institute of Complementary Medicine,Western Sydney University;Key Laboratory of Adolescent Health Assessment and Exercise Intervention,Ministry of Education,East China Normal University;School of Life Science and Biotechnology,Shanghai Jiao Tong University;
  • 关键词:运动 ; 自噬 ; 骨骼肌 ; 抗氧化防御功能
  • 英文关键词:exercise;;autophagy;;skeletal muscle;;antioxidant defense function
  • 中文刊名:YDYX
  • 英文刊名:Chinese Journal of Sports Medicine
  • 机构:杭州师范大学体育与健康学院;National Institute of Complementary Medicine Western Sydney University;华东师范大学青少年健康评价与运动干预教育部重点实验室;上海交通大学生命科学学院;
  • 出版日期:2018-01-25
  • 出版单位:中国运动医学杂志
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金(31171142);; 浙江省教育厅课题(Y201328990);; 杭州师范大学博士启动金(PE13002004028)
  • 语种:中文;
  • 页:YDYX201801010
  • 页数:8
  • CN:01
  • ISSN:11-1298/R
  • 分类号:51-58
摘要
目的:探讨一次性力竭运动能否激活骨骼肌自噬及运动性自噬对骨骼肌抗氧化防御功能的影响,为运动性自噬与骨骼肌抗氧化防御功能之间的发生机制提供实验依据。方法:30只健康雄性4周龄C57BL/6小鼠随机分为安静对照组(n=6)和运动组(n=24),运动组进行一次性力竭跑台运动,分别于运动完成后的0 h(n=6)、6 h(n=6)、12 h(n=6)和24 h(n=6)取小鼠两侧腓肠肌,采用黄嘌呤氧化酶法测定腓肠肌锰超氧化物歧化酶(Mn SOD)、总超氧化物歧化酶(T-SOD)和铜锌超氧化物歧化酶(Cuzn SOD)的活性;比色法测定腓肠肌总抗氧化能力(T-AOC)的含量;荧光定量PCR和Western Blot分别检测腓肠肌自噬相关因子Beclin1、P62和B淋巴细胞瘤-2(Bcl2)的m RNA和蛋白表达。结果:与安静对照组相比,(1)小鼠腓肠肌Beclin1 m RNA表达在运动后0 h、6 h均极显著升高(P<0.01),P62 m RNA表达在运动后24 h极显著升高(P<0.01);P62蛋白表达在运动后0 h、12 h和24 h均显著下降(P<0.05或P<0.01),Bcl2蛋白表达在运动后0 h、6 h和12 h均显著升高(P<0.05或P<0.01);(2)Mn SOD和Cuzn SOD活性在0 h均显著升高(P<0.05),T-SOD活性在6 h极显著下降(P<0.01),T-AOC含量在运动后6 h、12 h、24 h均显著升高(P<0.05或P<0.01);P62蛋白表达与T-AOC含量呈负相关。结论:一次性力竭跑台运动可在一定程度上激活骨骼肌自噬相关因子Beclin1 m RNA和P62蛋白的表达,可适度提高自噬;且自噬相关因子P62蛋白表达与骨骼肌抗氧化防御功能具有相关性,这可能是运动增加骨骼肌抗氧化防御功能的分子机理之一。
        Objective To explore whether a single bout of exhaustive exercise can activate autophagyin mice skeletal muscles and to investigate the effect and possible mechanisms of exercise-induced au-tophagy on antioxidant defense function in vivo. Methods Thirty healthy 4-week-old male C57 BL/6 mice were randomly divided into a control group(n=6) and an exercise group(n=24). The latter wassubjected to a single bout of exhaustive treadmill exercise. Gastrocnemius muscles of 6 mice on bothsides were then isolated right after,as well as 6 h,12 h and 24 h after the running. The manganese superoxide dismutase(Mn SOD),total superoxide dismutase(T-SOD) and Copper-Zinc superoxide dismutase(Cuzn SOD) activities were determined using the xanthine oxidase method and the content of the totalanti-oxygen capability(T-AOC) using the colorimetric method. The expression of Beclin1,P62 andBcl2 m RNAs,as well as their proteins were determined using the fluorescent quantitative PCR andWestern blotting. Results The expression of Beclin1 m RNA in gastrocnemius muscles of the exercisegroup increased more significantly than that of the control group right after the exercise,as well as 6 hours later(P<0.01). P62 m RNA expression also increased significantly(P<0.01) 24 h after the exercise.In contrast,the expression of P62 protein at 0 h,12 h and 24 h after the exercise decreased more signifi-cantly(P<0.05 or P<0.01) than that of the control group. Similarly,the expression of Bcl2 protein at0 h,6 h and 12 h increased significantly(P<0.05 or P<0.01). The Mn SOD and Cuzn SOD activity in-creased significantly right after the exercise(P<0.05). The T-SOD activity decreased significantly(P<0.01) 6 h after the exercise. T-AOC content increased significantly 6 h,12 h and 24 h after the exercise(P<0.05 or P<0.01). The P62 protein expression was negatively correlated with T-AOC content. Conclusion The single bout of exhaustive treadmill exercise can activate the expression of such autophagy-related factors as Beclin1 m RNA and P62 protein and increase the autophagy to a certain extent tomaintain antioxidant defensive function of the skeletal muscle.
引文
[1]Gundersen K.Excitation-transcription coupling in skeletalmuscle:the molecular pathways of exercise[J].Biol RevCamb Philos Soc,2011,86(3):564-600.
    [2]Hollander J,Bejma J,Ookawara T,et al.Superoxide dis-mutase gene expression in skeletal muscle:fiber-specificeffect of age[J].Mech Ageing Dev,2000,116(1):33-45.
    [3]Hollander J,Fiebig R,Gore M,et al.Superoxide dismutasegene expression in skeletal muscle:fiber-specific adapta-tion to endurance training[J].Am J Physiol,1999,277(3Pt2):R856-862.
    [4]Hollander J,Fiebig R,Gore M,et al.Superoxide dismutasegene expression is activated by a single bout of exercisein rat skeletal muscle[J].Pflugers Arch,2001,442(3):426-434.
    [5]Scherz SR,Elazar Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends Biochem Sci,2011,36(1):30-38.
    [6]Dobrowolny G,Aucello M,Rizzuto E,et al.Skeletal mus-cle is a primary target of SOD1G93A-mediated toxicity[J].Cell Metab,2008,8(5):425-436.
    [7]王平,李敏,漆正堂,等.骨骼肌自噬及运动对其影响机制研究进展[J].中国运动医学杂志,2012,31(5):462-466.
    [8]Bedford TG,Tipton CM,Wilson CN,et al.Maximum oxy-gen consumption of rats and its changes with various ex-perimental procedures[J].J Appl Physiol Respir EnvironExerc Physiol,1979,47(4):1278-1283.
    [9]Yan FW,Fang F,Jin HM,et al.Influence of tartary buck-wheat xtracts supplementation on oxidative stress in-duced by acute exhaustive exercise in rats[J].Int J Phar-macol,2012,8(8):695-700.
    [10]Yamada E,Bastie CC,Koga H,et al.Mouse skeletal mus-cle fiber-type-specific macroautophagy and muscle wast-ing are regulated by a Fyn/STAT3/Vps34 signaling path-way[J].Cell Rep,2012,1(5):557-569.
    [11]Zhang YW,Shi J,Li YJ,et al.Cardiomyocyte death indoxorubicin-induced cardiotoxicity[J].Arch Immunol TherExp(Warsz),2009,57(6):435-445.
    [12]Klionsky DJ,Cregg JM,Dunn WJ,et al.A unified nomen-clature for yeast autophagy-related genes[J].Dev Cell,2003,5(4):539-545.
    [13]Sahani MH,Itakura E,Mizushima N.Expression of the au-tophagy substrate SQSTM1/p62 is restored during pro-longed starvation depending on transcriptional upregula-tion and autophagy-derived amino acids[J].Autophagy,2014,10(3):431-441.
    [14]Ju J S,Jeon S I,Park J Y,et al.Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endur-ance exercise-trained condition[J].J Physiol Sci,2016,5(4):1-10.
    [15]He CC,Michael CB,Viviana M,et al.Exercise–inducedBCL2-regulated autophagy is required for muscle glu-cose homeostasis[J].Nature,2012,481(7382):511-515.
    [16]Lira VA,Okutsu M,Zhang M,et al.Autophagy is requiredfor exercise training-induced skeletal muscle adaptationand improvement of physical performance[J].FASEB J,2013,27(10):4184-4193.
    [17]Ferraro E,Giammarrioli AM,Chiandotto S,et al.Exercise-induced skeletal muscle remodeling and metabolic adapta-tion:redox signaling and role of autophagy[J].Antioxid Re-dox Signal,2014,21(1):154-176.
    [18]钱帅伟,丁树哲.运动性细胞自噬是调节骨骼肌代谢稳态的内置机制[J].体育科学,2015,35(10):55-65.
    [19]Wojtaszewski JF,Jorgensen SB,Hellstern Y,et al.Glyco-gen-dependent effects of 5-aminoimidazole-4-carbox-amide(AICA)-riboside on AMP-activated protein kinaseand glycogen synthase activities in rat skeletal muscle[J].Diabetes,2002,51(2):284-292.
    [20]Tam BT,Siu PM.Autophagic cellular responses to physi-cal exercise in skeletal muscle[J].Sports Med,2014,44(5):625-640.
    [21]Tam BT,Pei XM,Yu AP,et al.Autophagic adaptation isassociated with exercise-induced fibretype shifting inskeletal muscle[J].Acta Physiol(Oxf),2015,214(2):221-236.
    [22]Vainshtein A,Tryon LD,Pauly M,et al.Role of PGC-1dur-ing acute exercise-induced autophagy and mitophagy inskeletal muscle[J].Am J Physiol Cell Physiol,2015,308(9):C710-C719.
    [23]White E.Deconvoluting the context-dependent role for au-tophagy in cancer[J].Nat Rev Cancer,2012,12(6):401-410.
    [24]Jamart C,Naslain D,Gilson H,et al.Higher activation of autophagy in skeletal muscle of mice during enduranceexercise in the fasted state[J].Am J Physiol EndocrinolMetab,2013,305(8):E964-E974.
    [25]Vogel C,Marcotte EM.Insights into the regulation of pro-tein abundance from proteomic and transcriptomic analy-ses[J].Nat Rev Genet,2012,13(4):227-232.
    [26]De Godoy LM,Olsen JV,Cox J,et al.Comprehensivemass-spectrometry-based proteome quantification of hap-loid versus diploid yeast[J].Nature,2008,455(7217):1251-1254.
    [27]He C,Levine B.The Beclin 1 interactome[J].Curr OpinCell Biol,2010,22(2):140-149.
    [28]Voehringer DW,Meyn RE.Redox aspects of Bcl-2 func-tion[J].Antioxid Redox Signal,2000,2(3):537-550.
    [29]Veis DJ,Sorenson CM,Shutter JR,et al.Bcl-2-deficientmice demonstrate fulminant lymphoid apoptosis,polycystickidneys,and hypopigmented hair[J].Cell,1993,75(2):229-240.
    [30]Kane DJ,Sarafian TA,Anton R,et al.Bcl-2 inhibition ofneural death:decreased generation of reactive oxygen spe-cies[J].Science,1993,262(5137):1274-1277.
    [31]Merad SM,Boitier E,Nicole A,et al.Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mi-tochondrial respiratory dysfunction induced by glutathionedepletion[J].Exp Neurol,1999,158(2):428-436.
    [32]倪振洪,何凤田,连继勤.Bcl2与自噬的研究进展[J].现代医药卫生,2016,32(3):321-324.
    [33]Schwanh?usser B,Busse D,Li N,et al.Global quantifica-tion of mammalian gene expression control[J].Nature,2011,473(7347):337-342.
    [34]Sun Y,Cui D,Zhang Z,et al.Attenuated oxidative stressfollowing acute exhaustive swimming exercise was accom-panied with modified gene expression profiles of apopto-sis in the skeletal muscle of mice[J].Oxid Med Cell Lon-gev,2016,2016:8381242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700