梯度多胞牺牲层的抗爆炸分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-blast analysis of graded cellular sacrificial cladding
  • 作者:蔡正宇 ; 丁圆圆 ; 王士龙 ; 郑志军 ; 虞吉林
  • 英文作者:Cai Zhengyu;Ding Yuanyuan;Wang Shilong;Zheng Zhijun;Yu Jilin;CAS Key Laboratory of Mechanical Behavior and Design of Materials,Department of Modern Mechanics,University of Science and Technology of China;Mechanics and Materials Science Research Center,Ningbo University;
  • 关键词:多胞材料 ; 牺牲层结构 ; 爆炸载荷 ; 冲击波 ; 有限元方法
  • 英文关键词:cellular materials;;sacrificial cladding;;blast load;;shock wave;;finite element method
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:中国科学技术大学近代力学系中国科学院材料力学行为和设计重点实验室;宁波大学力学与材料科学研究中心;
  • 出版日期:2017-05-25
  • 出版单位:爆炸与冲击
  • 年:2017
  • 期:v.37;No.173
  • 基金:国家自然科学基金项目(11372307,11372308)
  • 语种:中文;
  • 页:BZCJ201703003
  • 页数:9
  • CN:03
  • ISSN:51-1148/O3
  • 分类号:23-31
摘要
运用一维非线性塑性冲击波模型和细观有限元模型对密度梯度多胞牺牲层的抗爆炸性能进行了分析。基于率无关的刚性-塑性硬化模型,建立了描述冲击波在多胞牺牲层中传播的控制方程,分别给出了正、负密度梯度多胞材料在指数型爆炸载荷作用下的响应特性。研究了可正好吸收爆炸能量的梯度多胞牺牲层的临界厚度与载荷强度、覆盖层质量、多胞材料的密度梯度等参数之间的关系,给出了以临界厚度和支撑端应力峰值为指标的密度梯度设计图。运用二维细观有限元模型验证了基于非线性塑性冲击波模型的抗爆炸分析的有效性。
        The blast mitigation behavior of a density-graded cellular sacrificial cladding is investigated by using a nonlinear plastic shock model and a cell-based finite element model.Based on a rate-independent,rigid-plastic hardening idealization,a theoretical approach is applied to analyze the propagation of shock wave in density-graded cellular rods subjected to blast loading.The influences of the intensity of blast load,the cover mass and the density gradient parameter of the cellular material on the critical thickness,which is the minimum thickness of the core layer when the energy of explosion is fully absorbed,are investigated.A design guide of density-gradient is provided which considers the critical thickness of the cellular core as well as the peak stress at the support end.The validity of the anti-blast analysis of the graded cellular sacrificial cladding based on the nonlinear plastic shock model is verified by using cell-based finite element models.
引文
[1]Reid S R,Peng C.Dynamic uniaxial crushing of wood[J].International Journal of Impact Engineering,1997,19(5/6):531-570.
    [2]Liu Jiagui,Hou Bing,Lu Fangyun,et al.A theoretical study of shock front propagation in the density graded cellular rods[J].International Journal of Impact Engineering,2015,80:133-142.
    [3]Guruprasad S,Mukherjee A.Layered sacrificial claddings under blast loading:Part I:Analytical studies[J].International Journal of Impact Engineering,2000,24(9):957-973.
    [4]Cui L,Kiernan S,Gilchrist M D.Designing the energy absorption capacity of functionally graded foam materials[J].Materials Science and Engineering A,2009,507(1):215-225.
    [5]Zhang Jianjun,Wang Zhihua,Zhao Longmao.Dynamic response of functionally graded cellular materials based on the Voronoi model[J].Composites Part B:Engineering,2016,85:176-187.
    [6]吴鹤翔,刘颖.梯度变化对密度梯度蜂窝材料力学性能的影响[J].爆炸与冲击,2013,33(2):163-168.Wu Hexiang,Liu Ying.Influences of density gradient variation on mechanical performances of density graded honeycomb materials[J].Explosion and Shock Waves,2013,33(2):163-168.
    [7]Wang Xiaohai,Zheng Zhijun,Yu Jilin.Crashworthiness design of density-graded cellular metals[J].Theoretical and Applied Mechanics Letters,2013,3(3):9-13.
    [8]Zheng Jie,Qin Qinghua,Wang T J.Impact plastic crushing and design of density-graded cellular materials[J].Mechanics of Material,2016,94:66-78.
    [9]Karagiozova D,Alves M.Propagation of compaction waves in cellular materials with continuously varying density[J].International Journal of Solids and Structures,2015,71:323-337.
    [10]Hanssen A G,Enstock L,Langseth M.Close-range blast loading of aluminum foam panels[J].International Journal of Impact Engineering,2002,27(6):593-618.
    [11]Ma G W,Ye Z Q.Energy absorption of double-layer foam cladding for blast alleviation[J].International Journal of Impact Engineering,2007,34(2):329-347.
    [12]Liao Shenfei,Zheng Zhijun,Yu Jilin,et al.A design guide of double-layer cellular claddings for blast alleviation[J].International Journal of Aerospace and Lightweight Structures,2013,3(1):109-133.
    [13]Sawle D R.Hypervelocity impact in thin sheets,semi-infinite targets at 15km/s[J].AIAA Journal,1970,8(7):1240-1244.
    [14]丁圆圆,王士龙,郑志军,等.多胞牺牲层的抗爆炸分析[J].力学学报,2014,46(6):825-833.Ding Yuanyuan,Wang Shilong,Zheng Zhijun,et al.Anti-blast analysis of cellular sacrificial cladding[J].Chinese Journal of Theoretical and Applied Mechanics,2014,46(6):825-833.
    [15]Fleck N A,Deshpande V S.The resistance of clamped sandwich beams to shock loading[J].Journal of Applied Mechanics,2004,71(3):386-401.
    [16]Tan P J,Reid S R,Harrigan J J,et al.Dynamic compressive strength properties of aluminium foams:Part II:Shock theory and comparison with experimental data and numerical models[J].Journal of the Mechanics and Physics of Solids,2005,53(10):2206-2230.
    [17]Wang Shilong,Ding Yuanyuan,Wang Changfeng,et al.Dynamic material parameters of closed-cell foams under high-velocity impact[J].International Journal of Impact Engineering,2017,99:111-121.
    [18]王长峰,郑志军,虞吉林.泡沫杆撞击刚性壁的动态压溃模型[J].爆炸与冲击,2013,33(6):587-593.Wang Changfeng,Zheng Zhijun,Yu Jilin.Dynamic crushing models for a foam rod striking a rigid wall[J].Explosion and Shock Waves,2013,33(6):587-593.
    [19]Zheng Zhijun,Yu Jilin,Li Jianrong.Dynamic crushing of 2Dcellular structures:A finite element study[J].International Journal of Impact Engineering,2005,32(1/2/3/4):650-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700