细菌纳米纤维素复合抗菌水凝胶敷料的性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Properties of Bacterial Nanocellulose-based Antibacterial Hydrogel Composite Dressings
  • 作者:张丽 ; 袁海彬 ; 陈琳 ; 洪枫
  • 英文作者:ZHANG Li;YUAN Hai-bin;CHEN Lin;HONG Feng;College of Chemistry, Chemical Engineering and Biotechnology, Donghua University;
  • 关键词:细菌纤维素 ; 海藻酸钠 ; 聚乙烯醇 ; 硼酸 ; 抗菌敷料
  • 英文关键词:bacterial nano-cellulose;;sodium alginate;;polyvinyl alcohol;;boric acid;;antibacterial dressing
  • 中文刊名:XWSK
  • 英文刊名:Journal of Cellulose Science and Technology
  • 机构:东华大学化学化工与生物工程学院微生物与工业生物技术研究组;
  • 出版日期:2019-06-28
  • 出版单位:纤维素科学与技术
  • 年:2019
  • 期:v.27;No.106
  • 基金:中央高校基本科研业务费专项资金资助项目(2232019A3-08和2232017A-02)
  • 语种:中文;
  • 页:XWSK201902005
  • 页数:9
  • CN:02
  • ISSN:44-1336/TQ
  • 分类号:36-43+63
摘要
为了保留细菌纤维素(BNC)独特的纳米三维网络结构,并改善其用于敷料时性能单一的不足,通过旋转浸渍法,将BNC与海藻酸钠(SA)、聚乙烯醇(PVA)复合,再置于硼酸(BA)-氯化钙溶液中浸渍交联,得到力学性能增强、抗菌效果显著、促凝血优异的复合水凝胶敷料。通过场发射电子显微镜、红外光谱、拉力测试、水蒸气透过率、抑菌圈和振荡法抗菌测试、全血凝固时间测定等手段表征了复合抗菌水凝胶的结构和性能。结果表明,SA、PVA与BNC实现了很好的复合,最大断裂拉力比纯BNC提高了3倍,杨氏模量提高了5倍多;复合抗菌水凝胶具有良好的水蒸气透过率,达到751.8±40 g/m~2/24h;SA/PVA/BNC水凝胶具有广谱抗菌性能和良好的促凝血效应,在功能性敷料领域应用潜力巨大。
        In order to preserve the unique three-dimensional nano-network structure and improve the single performance deficiency as applied in wound dressings, bacterial cellulose(BNC) was composited with sodium alginate(SA) and polyvinyl alcohol(PVA) by using a rotary dipping method. And then the BNC composite was impregnated and cross-linked in a boric acid(BA)-calcium chloride solution to obtain a composite hydrogel dressing with enhanced mechanical properties, remarkable antibacterial effect, and excellent coagulative ability.The structure and properties of the antibacterial composite hydrogel were characterized by field emission electron microscopy, infrared spectroscopy, tensile test, water vapor transmission rate, antibacterial test of inhibition zone and shaking culture, and determination of whole blood clotting time. The results showed that SA, PVA and BNC had been combined well. The maximum breaking tensile force of SA/PVA/BNC was 3 times higher than pure BNC, and the Young's modulus was increased by more than 5 times. The antibacterial composite hydrogel had good water vapor transmission rate that reached 751.8±40 g/m~2/24 h. SA/PVA/BNC hydrogel had broad-spectrum antibacterial properties and good procoagulant effect, which has great potential in the field of functional wound dressings.
引文
[1]Seetharaman S,Natesan S,Stowers R S,et al.A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity[J].Acta Biomaterialia,2011,7(7):2787-2796.
    [2]Manafi A,Hashemlou A,P,Moghimi H.Enhancing drugs absorption through third-degree burn wound eschar[J].Burns,2008,34(5):698-702.
    [3]Rigo C,Ferroni L,Tocco I,et al.Active silver nanoparticles for wound healing[J].International Journal of Molecular Sciences,2013,14(3):4817-4840.
    [4]Ross P,Mayer R,Benziman M.Cellulose biosynthesis and function in bacteria[J].Microbiological Reviews,1991,55(1):35-58.
    [5]Makiko K,William H,Tomoya I,et al.Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):9091-9095.
    [6]Helmiyati,Aprilliza M.Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent[J].International Symposium on Current Progress in Functional Materials,2017,188:1-5.
    [7]胡永利,张淑平.基于海藻酸钠抗菌材料制备及应用的研究进展[J].化工进展,2016,35(4):1126-1131.
    [8]Boppana R,Mohan G K,Nayak U,et al.Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery[J].International Journal of Biological Macromolecules,2015,75:133-143.
    [9]Liu Y,Yu W,Gu Q S,et al.Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin[J].International Journal of Biological Macromolecules,2017,96:569-577.
    [10]Millon L E,Mohammadi H,Wan W K.Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications[J].Journal of Biomedical Materials Research Part B Applied Biomaterials,2010,79B(2):305-311.
    [11]韩颖,徐玉英,田林奇,等.聚乙烯醇基水凝胶敷料的研究进展[J].中国医疗器械,2018,4(26):437-439.
    [12]Millon L E,Guhados G,Wan W.Anisotropic polyvinyl alcohol―Bacterial cellulose nanocomposite for biomedical applications[J].Journal of Biomedical Materials Research Part B Applied Biomaterials,2008,86B(2):444-452.
    [13]日本バイオマテリアル学会.Journal of Biomedical Materials Research Part B Applied Biomaterials[M].2003.
    [14]Baker S J,Ding C Z,Akama T,et al.Therapeutic potential of boron-containing compounds[J].Future Medicinal Chemistry,2009,1(7):1275-1288.
    [15]Bolanos L,Lukaszewski K,Bonilla I,et al.Why boron?[J].Plant Physiology&Biochemistry,2004,42(11):907-912.
    [16]Sayin Z,Ucan U S,Sakmanoglu A.Antibacterial and antibiofilm effects of boron on different bacteria[J].Biological Trace Element Research,2016,173(1):1-6.
    [17]中华人民共和国医药行业标准.接触性创面敷料试验方法第2部分:透气膜敷料水蒸气透过率YY/T0471.2-2004.
    [18]中华人民共和国国家标准.纺织品抗菌性能的评价第1部分:琼脂扩散法GB/T20944.1-2007.
    [19]Yuan H,Qin J,Xie J,et al.Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration[J].Nanoscale,2016,8(36):16307-16322.
    [20]王蕾.细菌纤维素抗菌敷料的制备及性能研究[D].东华大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700