施钾与蚜虫取食诱导的水杨酸对马铃薯抗虫性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of potassium application and aphid feeding-induced salicylic acid on insect resistance in potato
  • 作者:徐松鹤 ; 李丽娜 ; 白雪 ; 郭美兰 ; 任琴
  • 英文作者:XU Song-He;LI Li-Na;BAI Xue;GUO Mei-Lan;REN Qin;School of Life Sciences, Jining Normal University;College of Life Sciences, Hebei Agriculture University;
  • 关键词:马铃薯 ; 水杨酸 ; 钾肥 ; 桃蚜 ; 抗氧化酶 ; 脯氨酸含量
  • 英文关键词:Solanum tuberosum;;salicylic acid;;potassium fertilizer;;Myzus persicae;;anoxidase;;proline content
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:集宁师范学院生命科学学院;河北农业大学生命科学学院;
  • 出版日期:2019-03-20
  • 出版单位:昆虫学报
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金项目(31160368);; 内蒙古自然科学基金项目(2014MS0354);; 集宁师范学院校级科研创新团队建设项目(jstd1703);集宁师范学院校级重点实验室项目(jskypt1702);; 乌兰察布市经济作物病虫害防治中心(jsyjs1708)
  • 语种:中文;
  • 页:KCXB201903008
  • 页数:8
  • CN:03
  • ISSN:11-1832/Q
  • 分类号:71-78
摘要
【目的】探讨施钾条件下,蚜虫取食诱导的水杨酸在促进马铃薯Solanum tuberosum抗虫性方面的作用机制,为提高作物抗虫性提供科学依据。【方法】施钾(外施硫酸钾6 g/株)、虫害(桃蚜Myzus persicae取食, 5头成虫/株)、施钾+虫害及外源水杨酸(浓度分别为15, 30和45μmol/L,喷施量20 mL/株)条件下,测定马铃薯叶片中水杨酸和脯氨酸含量、苯丙氨酸解氨酶(PAL)活性及抗氧化酶[过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)]活性。【结果】结果表明:与未处理对照相比,施钾、虫害、施钾+虫害处理后马铃薯叶片中内源水杨酸含量分别增加了1.1,1.3和1.5倍,PAL活性分别增加了23.3%, 22.3%和35.0%。在施钾、虫害、施钾+虫害3个处理中,施钾+虫害处理的马铃薯叶片中内源水杨酸含量和PAL活性均为最高。用不同浓度外源水杨酸喷施马铃薯叶片,不论是否施钾,用浓度为15μmol/L水杨酸喷施马铃薯植株后,其SOD活性均显著高于对照组。施钾后除喷施30μmol/L水杨酸溶液外,喷施15和45μmol/L水杨酸溶液的马铃薯植株POD活性均显著高于各自对照,活性分别为各自对照的1.7和1.8倍。施钾组中CAT活性在15和30μmol/L水杨酸喷施后均显著高于对照,分别为对照的1.3和1.5倍。喷施15μmol/L水杨酸后,马铃薯叶片中脯氨酸含量(1.2 OD/g pro)较对照(0.4 OD/g pro)显著升高。【结论】虫害、施钾+虫害处理均能提高马铃薯叶片中水杨酸含量和PAL活性。15μmol/L外源水杨酸显著提高了施钾组中POD, SOD和CAT活性及脯氨酸含量,说明15μmol/L是所用最适水杨酸浓度,该浓度下水杨酸与施钾具有正交互作用。结果提示虫害与施钾共同作用能增强水杨酸信号途径,从而提高植物的抗虫性
        【Aim】 This study aims to explore the mechanism of aphid feeding-induced salicylic acid(SA) in improving the insect resistance of potato(Solanum tuberosum) under potassium application, so as to provide the scientific basis for insect resistance in crops. 【Methods】 The endogenous contents of SA and proline, and the activities of phenylalanine ammonia lyase(PAL) and antioxidases including peroxidase(POD), superoxide dismutase(SOD) and catalase(CAT) in potato leaves after potassium application(6 g potassium sulphate/plant), insect damage(aphid feeding, 5 adults of Myzus persicae/plant), potassium application plus aphid feeding, and spraying exogenous SA(20 mL/plant at the concentrations of 15, 30 and 45 μmol/L, respectively) were measured. 【Results】 The results showed that the SA contents in potato leaves in the treatment groups of potassium application, aphid feeding, and potassium application plus aphid feeding were 1.1-, 1.3-, and 1.5-fold higher than that in the untreated control, respectively, and the PAL activities in these treatment groups were increased by 23.3%, 22.3% and 35.0% as compared to that in the untreated control, respectively. Both the SA content and PAL activity in potato leaves with potassium application plus aphid feeding were the highest among the above three treatments. Irrespective of potassium application, the SOD activities in potato leaves were increased significantly when the potato plants were sprayed with 15 μmol/L SA. After potassium application, the POD activities in potato leaves treated with SA at the doses of 15 and 45 μmol/L were 1.7-and 1.8-fold as high as those of the corresponding controls, respectively. Similarly, the CAT activities in potato leaves in potassium application group treated with SA at the doses of 15 and 30 μmol/L were 1.3-and 1.5-fold as high as those of the control groups, respectively. After 15 μmol/L exogenous SA was sprayed on potato leaves, the proline content in the treatment group(1.2 OD/g pro) was significantly higher than that in the control group(0.4 OD/g pro). 【Conclusion】 Both treatments of aphid feeding and potassium application plus aphid feeding significantly enhance the endogenous SA content and the PAL activity in potato leaves. Spraying exogenous SA at the dose of 15 μmol/L on potato leaves can significantly increase the activities of anoxidases including POD, SOD and CAT and the proline content in the potassium application group, indicating that 15 μmol/L SA is the most suitable treatment concentration. At this treatment concentration a positive interaction between applying potassium and SA happens. The results suggest that both aphid feeding and potassium application can increase the SA signal pathways and so enhance plant resistance to pest insects.
引文
Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J, 2000. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem. Biophys. Res. Commun., 277(2): 305-310.
    Armengaud P, Breitling R, Amtmann A, 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol., 136(1): 2556-2576.
    Bostock RM, Karban R, Thaler JS, 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol., 43: 545-580.
    Chaman ME, Copaja SV, Argandoňa VH, 2003. Relationships between salicylic acid content, phenylalanin ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J. Agric. Food Chem., 51(8): 2227-2231.
    Cong CL, Zhi JR, Xie LF, Mou F, 2013. Expression of some defense enzyme genes in kidney bean leaves fed by Frankliniella occidentalis (Thysanoptera: Thripidae). Acta Entomol. Sin., 56(10): 1174-1180. [从春蕾, 郅军锐, 谢路飞, 牟峰, 2013. 西花蓟马取食对菜豆防御基因表达的诱导作用. 昆虫学报, 56(10): 1174-1180]
    Gao S, Sun WF, Li Y, Shi YL, Qi X, 2017. Physiological and biochemical effects of exogenous salicylic acid (SA) and abscisic acid (ABA) on maize seedlings under salt stress. Mol. Plant Breed., 15(10): 4159-4164. [高山, 孙伟峰, 李莹, 史岩玲, 祁新, 2017. 水杨酸(SA)和脱落酸(ABA)对盐胁迫玉米幼苗生长的影响. 分子植物育种, 15(10): 4159-4164]
    Hui ZL, Wang D, Li ZG, Li ZZ, Li XP, Zhang JL, 2014. Influences of exogenous salicylic acid on growth and resistance physiology of continuous cropping potato. Agric. Res. Arid Areas, 32(4): 1-8. [回振龙, 王蒂, 李宗国, 李朝周, 李旭鹏, 张俊莲, 2014. 外源水杨酸对连作马铃薯生长发育及抗性生理的影响. 干旱地区农业研究, 32(4): 1-8]
    Jaiti F, VerdeiL JL, Hadrami IE, 2009. Effect of jasmonic acid on the induction of polyphenol oxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Physiol. Mol. Plant Pathol., 74(1): 84-90.
    Jayasekara TK, Stevenson PC, Belmain SR, Farman DI, Hall DR, 2002. Identification of methyl salicylate as the principal volatile component in the methanol extract of root bark of Securidaca longepedunculata Fers. J. Mass Spec., 37(6): 577-580.
    Jia Z, Song ZW, Jin ZY, Wang L, 2004. Studies on the POD activities in pearleaf crabapple (Malus zumi) leaves damaged by plum spider mite (Tetranychus viennensis). Acta Bot. Bor.-Occid. Sin., 24(11): 2136-2139. [贾贞, 宋占午, 金祖荫, 王莱, 2004. 山楂叶螨危害对海棠叶片POD的影响. 西北植物学报, 24(11): 2136-2139]
    K?stner J, von Knorre D, Himanshu H, Erb M, Baldwin IT, Meldau S, 2014. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore. PLoS ONE, 9(1): e86500.
    Lakshmi DV, Padmaja G, Rao PC, 2012. Effect of levels of nitrogen and potassium on soil available nutrient status and yield of potato (Solanum tuberosum L.). Ind. J. Agric. Res., 46(1): 36-41.
    Li LJ, Wang Q, Han YL, Tan JF, 2009. Study of effects of potassium levels on phenolic and lignin metabolism of wheat and dynamic of aphid population. Chin. Agric. Sci. Bull., 25(17): 143-148. [李刘杰, 汪强, 韩燕来, 谭金芳, 2009. 钾水平对小麦酚类物质、木质素代谢和接种蚜虫群体动态的影响. 中国农学通报, 25(17): 143-148]
    Ma XL, Bai X, Li HJ, Xu SH, Ren Q, 2013. Changes of polyphenol oxidase activity in potato leaves after potassium supply and aphid infestation. Acta Entomol. Sin., 56(12): 1413-1417. [马晓林, 白雪, 李惠君, 徐松鹤, 任琴, 2013. 施钾与蚜害处理后马铃薯叶片中多酚氧化酶活性的变化. 昆虫学报, 56(12): 1413-1417]
    Mao H, Chen H, Liu XX, Zhang QW, 2011. Effects of Apolygus lucorum feeding and mechanical damage on defense enzyme activities in cotton leaves. Chin. J. Appl. Entomol., 48(5): 1431-1436. [毛红, 陈瀚, 刘小侠, 张青文, 2011. 绿盲蝽取食与机械损伤对棉花叶片内防御性酶活性的影响. 应用昆虫学报, 48(5): 1431-1436]
    Moran PJ, Thompson GA, 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol., 125(2): 1074-1085.
    Pan M, Yang JP, Li YX, Liu LH, 2005. Changes of three enzymes of the Chinese chive damaged by Bradysia odoriphage. Acta Agric. Bor.-Occid. Sin., 14(3): 137-140. [潘敏, 杨建平, 李永祥, 刘连航, 2005. 韭菜受迟眼蕈蚊为害后3种酶活性的变化. 西北农业学报, 14(3): 137-140]
    Peng JY, Huang YP, 2005. The signaling pathways of plant defense response and their interaction. J. Plant Physiol. Mol. Biol., 31(4): 347-353. [彭金英, 黄勇平, 2005. 植物防御反应的两种信号转导途径及其相互作用. 植物生理与分子生物学学报, 31(4): 347-353]
    Ren Q, Cao LZ, Su JW, Xie MH, Zhang QW, Liu XX, 2010. Volatile emission of the invasive weed Eupatorium adenophorum and its response to Aphis gossypii and exogenous methyl jasmonate. Weed Sci., 58(3): 252-257.
    Reymond P, 2013. Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta, 238(2): 247-258.
    Smith CM, Boyko EV, 2007. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol. Exp. Appl., 122(1): 1-16.
    Sun YC, Cao HF, Yin J, Kang L, Ge F, 2010. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ., 33(5): 729-739.
    Wang Y, Zhang YL, Su JW, Li H, Wang YL, Miao YH, Tan JF, Han YL, 2014. Potassium application for increased jasmonic acid content and defense enzyme activities of wheat leaves infested by aphids. Acta Ecol. Sin., 34(10): 2539-2547. [王祎, 张月玲, 苏建伟, 李慧, 王宜伦, 苗玉红, 谭金芳, 韩燕来, 2014. 施钾提高蚜害诱导的小麦茉莉酸含量和叶片相关防御酶活性. 生态学报, 34(10): 2539-2547]
    Zhao LY, 2006. Research on the Biochemical and Molecular Mechanism of Induced Defense Responses of Wheat Infested by Sitoboin avenae. MSc Thesis, Chinese Academy of Agricultural Sciences, Beijing. [赵丽艳, 2006. 麦长管蚜取食诱导小麦防御反应的生化及分子机制. 北京: 中国农业科学院硕士学位论文]
    Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H, 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol., 134(1): 420-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700