微氧折流反应器启动过程产甲烷菌群落结构变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure characteristics of methanogenic community produced during the startup of microaerobic baffled reactor
  • 作者:叶飞 ; 吴胜军 ; 黄培 ; 肖艳 ; 王雨
  • 英文作者:YE Fei;WU Shengjun;HUANG Pei;XIAO Yan;WANG Yu;Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences;Key Laboratory of Reservoir Aquatic Environment,Chinese Academy of Sciences;Institute of Geodesy and Geophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Wuhan Textile University;
  • 关键词:微氧折流反应器 ; 产甲烷菌 ; MCR基因 ; 群落结构 ; 克隆文库 ; 实时定量PCR
  • 英文关键词:microaerobic baffled reactor;;methanogen;;MCR gene;;community structure;;clone library;;real-time quantitative PCR
  • 中文刊名:YYHS
  • 英文刊名:Chinese Journal of Applied and Environmental Biology
  • 机构:中国科学院重庆绿色智能技术研究院;中国科学院水库水环境重点实验室;中国科学院测量与地球物理研究所;中国科学院大学;武汉纺织大学;
  • 出版日期:2014-06-25
  • 出版单位:应用与环境生物学报
  • 年:2014
  • 期:v.20;No.109
  • 基金:中国科学院“西部之光”人才培养计划“西部博士资助项目”;; 重庆市基础与前沿研究计划项目(cstc2013jcyjA20003);; 重庆市科技攻关计划项目(cstc2012ggB20001)资助~~
  • 语种:中文;
  • 页:YYHS201403012
  • 页数:7
  • CN:03
  • ISSN:51-1482/Q
  • 分类号:73-79
摘要
采用实时荧光定量PCR和构建克隆文库的方法,对微氧折流反应器启动过程中产甲烷菌群落结构进行分析,以期了解反应器去除污染物机理.结果表明:随着反应器的运行,产甲烷菌丰度整体呈现增加趋势,化学需氧量(COD)去除率由启动初期的30%左右逐渐上升到75%左右,出水pH也从初期的弱酸性到后期稳定在7.3左右.其中,微氧曝气的1#格室产甲烷菌基因丰度先由第一阶段的1 580 copies ng-1(S1A)下降到第二阶段的1 355 copies ng-1(S2A),最后稳定阶段又升高到2 864 copies ng-1(S3A).2#格室的产甲烷菌基因丰度表现出与1#格室类似的趋势,但是相比1#格室变化幅度小,3个阶段的产甲烷基因丰度依次分别为2 024 copies ng-1(S1B)、1 970 copies ng-1(S2B)、2 282 copies ng-1(S3B).处于厌氧状态的3#格室的产甲烷菌基因丰度随着反应器的运行逐步上升,稳定后达到最大,为3 508 copies ng-1(S3C).1#格室中,产甲烷优势菌由第一阶段的Methanobacteriales目(占所得产甲烷菌序列群50%)变为第三阶段的Methanomicrobiales目(80%).2#格室中没有明显的优势产甲烷菌,群落结构相对稳定,隶属于Methanomicrobiales目的产甲烷菌序列比例在3个阶段分别为36.4%、36.4%和30%.3#格室稳定运行后有60%的产甲烷菌序列群属于Methanosarcinales目,成为优势菌.在反应器运行的不同阶段,2#格室的生物多样性均高于1#格室,3#格室的多样性在前两个阶段没有变化,而在第三阶段升高.因此,在启动过程中,微氧折流反应器不同格室产甲烷菌的基因丰度、群落结构和生物多样性表现出不同的变化特征.
        The community structure of methanogens produced during operation of a microaerobic baffled reactor was analyzed by real-time quantitative PCR and clone library, with an aim to provide a reference basis for the research of the mechanism of pollutants removal. The results showed that the abundance of methanogens in the microaerobic baffled reactor i ncreased generally. With the running of the reactor the removal rate of COD raised from about 30% to about 75%; and the effluent pH changed from weakly acid in the beginning to about 7.3. The abundance of methanogenic MCR gene of the cell 1# treated by micro-oxygen aeration decreased from 1 580 copies ng-1(S1A) to 1 355 copies ng-1(S2A) and then raised to 2 864 copies ng-1(S3A). The abundance of methanogenic MCR gene of the cell 2# showed similar trend with that of the cell 1#, with smaller variation from 2 024 copies ng-1(S1B) to 1 970 copies ng-1(S2B), then to 2 282 copies ng-1(S3B) respectively. The abundance of methanogenic MCR gene of the cell 3# maintained in anaerobic state increased gradually to 3 508 copies ng-1(S3C) in the stable operational stage. The domination of methanogen in the cell 1#(50% of the sequences) was affiliated with the family of Methanobacteriales in the first stage. But the dominant methanogen turned into the family of Methanomicrobiales(80%) in the steady operation. There was no obvious dominant methanogen in the cell 2#, in which the community structure was relatively stable, and the methanogenic sequences affiliated with the family of Methanomicrobiales was 36.4%, 36.4% and 30% respectively in the three different stages. Methanosarcinales were the dominant methanogen(60% in the steady operation) in the cell 3#. At different stages of operation, the b iodiversity was higher in the cell 2# than in cell 1#. The biodiversity of the cell 3# raised in the third stage but did not change abviously in the first two.
引文
1 Lettinga G,Field J,Van LJ,Zeeman G,Huishoff PL.Advanced anaerobic wastewater treatment in the near future[J].Water Sci Technol,1997,35(10):5-12
    2 Barber WP,Stuckey DC.The use of the anaerobic baffled reactor(ABR)for wastewater treatment:a review[J].Water Res,1999,33(7):1559-1578
    3 刘然,彭剑峰,宋永会,王毅力,于雷,袁鹏,解明署.厌氧折流板反应器(ABR)中微生物种群演替特征[J].环境科学研究,2010,23(6):741-747 [Liu R,Peng JF,Song YH,Wang YL,Yu L,Yuan P,Xie MS.Succession characteristi cs of microbial communities in an anaerobic baffled reactor(ABR)[J].Res Environ Sci,2010,23(6):741-747]
    4 Zitomer D,Shrout J.High-sulfate,high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds[J].Water Environ Res,2000,72(1):90-97
    5 Chu LB,Zhang XW,Li X,Yang FL.Simultaneous removal of organic substances and nitrogen using amembrane bioreactor seeded with anaerobic granular sludge under oxygen-limited conditions[J].Desalination,2005,172(3):271-280
    6 董春娟.EGSB反应器的快速启动和运行特性研究[D].哈尔滨:哈尔滨工业大学,2005[Dong CJ.Quick startup and performance characteristic of EGSB reactor[D].Harbin:Harbin Institute of Technololy,2005]
    7 刘晓.微氧状态下EGSB反应器除污染性能研究[D].哈尔滨:哈尔滨工业大学,2010[Liu X.Performance of pollutant removal by EGSB reactor under microaerobic condition[D].Harbin:Harbin Institute of Technololy,2010]
    8 游胜,周兴求,牛小君,伍健东.IC反应器在微氧条件下的运行特性研究[J].中国给水排水,2009,25(9):16-19[You S,Zhou XQ,Niu XJ,Wu JD.Performance characteristic of IC reactor under micro-aerobic condition[J].Chin Water Wastewater,2009,25(9):16-19]
    9 董春娟,吕炳南.EGSB反应器在微氧条件下的运行特性[J].环境科学学报,2006,26(2):220-224[Dong CJ,Lu BN.Performa nce characteristic of the EGSB reactor in the microaerobic conditions[J].Acta Sci Circumst,2006,26(2):220-224]
    10 李宽峰,沈耀良,吴鹏.微氧曝气对ABR处理含硫酸盐废水SRB和MPB去除底物协同作用的研究[J].水处理技术,2013,39(10):108-111[Li KF,Shen YL,Wu P.Synergistic effect of micro-aeration on sulfate organic wastewater treatment with SRB and MPB in anaerobic baffled reactor[J].T echnol Water Treat,2013,39(10):108-111]
    11 贺晶晶.厌氧-微氧折流板反应器处理富含硫酸盐有机废水的研究[D].河北:河北工程大学,2009[He JJ.Study on an anaerobicmicroaerobic baff led reactor for high-sulfate organic wastewater treatment[D].Hebei:Hebei University of Engineering,2009]
    12 左剑恶,邢薇.嗜冷产甲烷菌及其在废水厌氧处理中的应用[J].应用生态学报,2007,18(9):2127-2132[Zuo JE,Xing W.Psychrophilic methanogens and their application in anaerobic wastewater treatment[J].Chin J Appl Ecol,2007,18(9):2127-2132]
    13 Hales BA,Edwards C,Ritchie DA,Hall G,Pickup RW,Saunders JR.Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis[J].Appl Environ Microbiol,1996,62(2):668-675
    14 Hallam SJ,Girguis PR,Preston CM,Richardson PM,DeLong EF.Identification of methyl coenzyme M reductase A(mcrA)genes associated with methane-oxidizing archaea[J].Appl Environ Microbiol,2003,69(9):5483-5491
    15 Schloss PD,Handelsman J.Introducing DOTUR,a computer program for defining operational taxonomic units and esti mating species richness[J].Appl Environ Microbiol,2005,71(3):1501-1506
    16 Liu Y,Whitman WB.Metabolic,phylogenetic,and ecological diversity of the methanogenic archaea[J].Ann NY Acad Sci,2008,1125(1):171-189
    17李刚,周兴求,伍健东.微氧条件下厌氧折流板反应器运行特性研究[J].环境工程学报,2009,3(7):1263-1267[Li G,Zhou XQ,Wu JD.Study on performance characteristic of anaerobic baffled reactor under microaerobic conditions[J].Chin J Environ Eng,2009,3(7):1263-1267]
    18 杜接第,王毅力,李炯,徐昕照,魏科技.HRT对ABR处理低浓度废水的效果和颗粒污泥特征的影响[J].环境科学,2009,7(10):2022-2029[Du JD,Wang YL,Li J,Xu XZ,Wei KJ.Impact of hydraulic retention time(HRT)in ABR on its operation performance and granular sludge characteristics when treating low-strength wastewater[J].Environ Sci,2009,7(10):2022-2029]
    19 孔火良,吴慧芳.水力停留时间对ABR反应器处理印染废水的影响[J].中国沼气,2008,26(3):15-18[K ong HL,Wu HF.Influences of hydraulic retention time on treating of printing and dyeing wastewater in an anoxic baffled reactor[J].Chin Biogas,2008,26(3):15-18]
    20 胡芬,刘志辉,陈泰.生物脱氮工艺研究进展[J].装备环境工程,2009,6(3):60-64[Hu F,Liu ZH,Chen T,Research progress of biological denitrification[J].Equip Environ Eng,2009,6(3):60-64]
    21 Macarie H,Guyot J P.Use of fer roussulphate to reduce the redoxpotential and allow the start-up of USAB reactor streating s lowly biodegradable compounds application to a wastewater containing4-methylbenzonicacid[J].Environ Technonl,1995,16:1180-1187
    22 Yu HQ,Tay JH,Fang HH.The role of calcium in sludge granulation during UASB reactor start-up[J].Water Res,2001,35(4):1 052-1060
    23 Schmidt JE,Ahring BK.Effects of magnesiumon thermophilic acetatedegrading granules in up flow anaerobic sludge blanket(UASB)reactors[J].Enzyme Micorb Technol,1993,15(4):304-307
    24 杨忠林,钟中,韩萍芳,吕效平.HRT及EPS对ABR中污泥性能的影响[J].南京理工大学学报(自然科学版),2012,34(4):22-26[Yang ZL,Zhong Z,Han PF,Lu XP.Effects of HRT and EPS on characteristics of sludge in anaerobic baffled reactor[J].J Nanjing Univ Technol(Nat Sci Ed),2012,34(4):22-26]
    25 朱葛夫.厌氧折流板反应器应用技术及微生物群落生态学研究[D].哈尔滨:哈尔滨工业大学,2007[Zhu GF.Practical technology and microbial community ecology of anaerobic baffled reactor[D].Harbin:Harbin Institute of Technology,2007]
    26 傅霖,辛明秀.产甲烷菌的生态多样性及工业应用[J].应用与环境生物学报,2009,15(4):574-578[Fu L,Xin MX.Ecological diversity and industrial application of methanogens[J].Chin J Appl Environ Biol,2009,15(4):574-578]
    27 Yang X,Garuti G,Farina R,Parisi V,Tilche A.Process differences between a sludge bed filter and an anaerobic baffled reactor treating soluble wastes[R].5th International Symposium on Anaerobic Digestion,Bologna,Italy,1988
    28 孙蔚旻.厌氧折流板反应器启动及其微生物群落研究[D].武汉:华中科技大学,2005[Sun WM.The startup of anaerobic baffled reactor and research of microbial ecology in ABR[D].Wuhan:Huazhong University of Science and Technology,2005]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700