集成力反馈的虚拟砂带抛光示教系统设计与实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and implementation of haptics-based virtual teaching system for belt grinding
  • 作者:谢海龙 ; 符俊岭 ; 李静蓉
  • 英文作者:Xie Hailong;Fu Junling;Li Jingrong;School of Mechanical and Automotive Engineering,South China University of Technology;
  • 关键词:机器人 ; 虚拟示教 ; 力反馈 ; 砂带抛光
  • 英文关键词:robot;;virtual teaching;;haptic interface;;belt grinding
  • 中文刊名:XXGY
  • 英文刊名:Modern Manufacturing Engineering
  • 机构:华南理工大学机械与汽车工程学院;
  • 出版日期:2019-01-18
  • 出版单位:现代制造工程
  • 年:2019
  • 期:No.460
  • 基金:广东省科技计划项目(2015B090922010,2017B010110010)
  • 语种:中文;
  • 页:XXGY201901032
  • 页数:7
  • CN:01
  • ISSN:11-4659/TH
  • 分类号:115+159-164
摘要
通过传统的编程方式(在线示教、离线编程)定义复杂曲面的抛光轨迹是一项复杂繁琐的工作,为了给机器人砂带抛光示教过程提供一种更加自然有效的交互方式,应用虚拟现实技术和力觉反馈技术,首先提出砂带抛光的力觉模型;然后,在此基础上,集成Phantom Desktop~力反馈设备开发了一套虚拟示教系统。用户在示教过程中能够更加自然真实地根据实时反馈力动态调整抛光力度、位姿等参数,获得理想的抛光质量。应用该系统进行的力学验证实验和工件加工表面质量评估实验表明:所提出的力觉模型能够准确模拟真实抛光过程中工件的受力情况,机器人在应用该虚拟示教系统进行示教后,所加工出的工件可获得与手工抛光相比拟的抛光质量。
        It is a complex and laborious job to define proper toolpath for belt grinding of complex part via traditional programming methods such as online robot teaching and Offline Programming( OLP). In order to provide a more natural and effective solution for robot teaching of belt grinding,a force feedback model for abrasive belt grinding is proposed by using virtual reality and haptic technology. Moreover,based the force model,a robot virtual teaching system is developed by integrating the Phantom Desktop~ force feedback device,which enable the user to adjust the grinding force,posture and other parameters dynamically in a more natural and real way to obtain a satisfactory grinding surface quality. Finally,the results of mechanical verification experiment and evaluation experiment of grinding surface quality show that the force model proposed is able to simulate the actual force accurately in belt grinding process,and moreover,after teaching process via virtual teaching system developed,the robot can obtain comparable surface grinding quality than the manual grinding via experienced work.
引文
[1] HUANG H,GONG Z M,CHEN X Q,et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Tech,2002(127):140-145.
    [2] SONG Y,YANG H,LV H. Intelligent Control for a Robot Belt Grinding System[J]. IEEE Transactions on Control Systems Technology,2013(21):716-724.
    [3] PAN Zengxi,POLDEN Joseph,LARKIN Nathan,et al. Recent Progress on Programming Methods for Industrial Robots[J]. Robotics and Computer Integrated Manufacturing,2012,28(2):87-94.
    [4]黄摇吴.枪匣表面机器人砂带抛光离线编程技术研究[D].重庆:重庆大学,2014.
    [5] REN X,CABARAVDIC M,ZHANG X,et al. A local process model for simulation of robotic belt grinding[J]. International Journal of Machine Tools&Manufacture,2007,47(6):962-970.
    [6] EVANS C J,PAUL E,DORNFELD D,et al. Material Removal Mechanisms in Lapping and Polishing[J]. CIRP AnnalsManufacturing Technology,2003,52(2):611-633.
    [7]夏薇,王科荣,廖小平,等.喷漆机器人虚拟示教系统中喷枪轨迹插补点位姿的算法及应用研究[J].现代制造工程,2009(10):11-16.
    [8]陈成军,周以齐,曲斌.基于力反馈的虚拟示教式机械手臂装配路径规划方法[J].系统仿真学报,2009,21(10):2945-2950.
    [9] LI J R,NI J L,XIE H L,et al. A novel force feedback model for virtual robot teaching of belt lapping[J]. International Journal of Advanced Manufacturing Technology,2017(3):1-10.
    [10] JOHNSON K L. Contact mechanics[M]. Cambridge:Cambridge University Press,1985.
    [11] ZHU D,LUO S,YANG L,et al. On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys[J]. Tribology International,2015(90):55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700