双向受力下钢筋混凝土框架节点抗剪承载力计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SHEAR CAPACITY CALCULATION METHOD OF PANEL ZONE IN REINFORCED CONCRETE FRAME UNDER BIDIRECTIONAL LOADING
  • 作者:李振宝 ; 崔燕伟 ; 宋坤 ; 马华 ; 唐贞云
  • 英文作者:LI Zheng-bao;CUI Yan-wei;SONG Kun;MA Hua;TANG Zhen-yun;Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit,Beijing University of Technology;School of Civil and Transportation Engineering,Henan University of Urban Construction;School of Architecture Engineering and Mechanics,Yanshan University;
  • 关键词:节点 ; 多维地震作用 ; 双向受力 ; 抗剪强度 ; 拉压杆模型
  • 英文关键词:panel zone;;multi-dimensional earthquake excitation;;bidirectional loading;;shear strength;;strut and tie model
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:北京工业大学工程抗震与结构诊治北京市重点实验室;河南城建学院土木与交通工程学院;燕山大学建筑工程与力学学院;
  • 出版日期:2019-01-17
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51508493);; 河北省博士后科研项目择优资助项目(B2016005003)
  • 语种:中文;
  • 页:GCLX201901019
  • 页数:8
  • CN:01
  • ISSN:11-2595/O3
  • 分类号:178-185
摘要
《建筑抗震设计规范》(GB 50011-2010)规定框架结构设计应保证其在两个方向分别满足抗震要求。但地震作用是多维的、随机的,框架节点可能在两个方向同时受力,使其抗震能力相比于单向地震作用可能会降低。目前对钢筋混凝土框架节点在两个方向同时受力时的抗剪承载力计算未见详尽报道。该文分析了钢筋混凝土框架节点在双向同时受力时的抗剪机理,双向受力下,节点内作用合成剪力,节点端部形成斜向受压区,节点内形成不同于单向受力下的斜向斜压杆。基于拉压杆模型建立了双向受力下框架节点的抗剪承载力计算方法,其计算结果与已有试验结果吻合良好。
        According to the provisions of the Chinese Code for Seismic Design of Buildings(GB 50011-2010),the anti-seismic capability of a frame structure in two horizontal directions are designed respectively.However,earthquake action is multi-dimensional and random,which will make a panel zone in a frame structure be loaded by bidirectional actions at the same time.Thusly,its anti-seismic capability may be lower than the designed capability based on a unidirectional earthquake action.So far,the detailed calculation methods of shear capability for a panel zone in a reinforced concrete(RC) frame subjected to bidirectional loading have not been reported.In this work,the shear mechanism of a panel zone in a RC frame under bidirectional loading was analyzed.It demonstrated that a synthetic shear force is imposed on a panel zone,the oblique compression zone comes into being at the end of a panel zone,and the diagonal strut is formed in a panel zone,which is different from the shear mechanism under unidirectional loading.A shear capacity calculation model was established based on the strut and tie model,and the predicted values by this work are in a good agreement with the reported experimental results.
引文
[1]Kitayama K,Asami S,Otani S,et al.Behavior of reinforced concrete three-dimensional beam-column connections with slabs[R].Japan Concrete Institute(JCI).Annual Japan Concrete Institute(JCI)Meeting,Tokyo,Japan,1986:649-652.
    [2]Fujii S,Morita S.Behavior of exterior reinforced concrete beam-column-slab sub-assemblages under bi-directional loading[R].Pacific Conf.on Earthquake Engineering,New Zealand,New Zealand National Society for Earthquake Engineering.Wellington,New Zealand,1987:339-350.
    [3]Li L M,Mander J B,Dhakal R P.Bidirectional cyclic loading experiment on a 3D beam-column joint designed for damage avoidance[J].Journal of Structural Engineering,ASCE,2008,134(11):1733-1742.
    [4]Fan J,Li Q,Nie J,et al.Experimental study on the seismic performance of 3D joints between concrete-filled square steel tubular columns and composite beams[J].Journal of Structural Engineering,ASCE,2014,140(12):0401409-1-0401409-13.
    [5]Burguieres S T,Jirsa J O.The behavior of beam-column joints under bidirectional load reversals[C].Bulletin D’Information,AICAP-CEB Symposium on Structural Concrete Under Seismic Actions,RMCE,1979(132):221-228.
    [6]张连德.钢筋砼空间框架节点抗震性能的研究[J].建筑结构学报,1987,8(2):1-9.Zhang Liande.A study of earthquake resisting behavior of reinforced concrete space frame joints[J].Journal of Building Structures,1987,8(2):1-9.(in Chinese)
    [7]闫维明,侯立群,陈适才,等.双向荷载作用下空间夹心节点受力性能试验研究[J].工程力学,2016,33(5):211-219.Yan Weiming,Hou Liqun,Chen Shicai,et al.Experimental study on the mechanical behavior of 3Dsandwich joints under bi-directional loading[J].Engineering Mechanics,2016,33(5):211-219.(in Chinese)
    [8]王英俊,梁兴文,吴继伟.纤维增强混凝土梁柱节点受剪承载力计算模型研究[J].工程力学,2016,33(3):77-86.Wang Yingjun,Liang Xingwen,Wu Jiwei.Calculation model of shear capacity of fiber-reinforced concrete beam-column joint[J].Engineering Mechanics,2016,33(3):77-86.(in Chinese)
    [9]Pan Z,Guner S,Vecchio F J.Modeling of interior beam-column joints for nonlinear analysis of reinforced concrete frames[J].Engineering Structures,2017(142):182-191.
    [10]Kassem W.Strut-and-tie modelling for the analysis and design of RC beam-column joints[J].Materials&Structures.2016,49(8):3459-3476.
    [11]Paulay T,Park R,Priestley M J N.Reinforced concrete beam-column joints under seismic actions[J].ACIJournal,1978,75(11):585-593.
    [12]Paulay T,Park R.Joints in reinforced concrete frames designed for earthquake resistance[R].Department of Civil Engineering,University of Canterbury,Christchurch,New Zealand,1984,6:33-34.
    [13]Schlaich J,Scha?fer K.Design and detailing of structural concrete using strut-and-tie models[J].The Structural Engineering,1991,69(6):113-125.
    [14]Vecchio F J,Collings M P.The modified compression-field theory for reinforced concrete elements subjected to shear[J].ACI Structural Journal,1986,83(2):219-231.
    [15]Hwang S J,Lee H J.Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance[J].ACIStructural Journal,1999,96(5):846-857.
    [16]Hwang S J,Lee H J.Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance[J].ACIStructural Journal,2000,97(1):35-44.
    [17]Beckingsale C W.Post elastic behaviour of reinforced concrete beam-column joints[D].Department of Civil Engineering,University of Canterbury,Christchurch,New Zealand,1980,8:360-368.
    [18]Sch?fer K.Strut-and-tie models for the design of structural concrete[R].Notes of Workshop,Department of Civil Engineering,National Cheng Kung University,Tainan,Taiwan,1996:140-141.
    [19]CEB-FIP model code 1990[S].Thomas Telford services Ltd,Thomas Telford House,ComitéEuro-International du Béton as Bulletins d’Information,1993:216-217.
    [20]Hwang S J,Lee H J.Strength prediction for discontinuity regions by softened strut-and-tie model[J].Journal of Structural Engineering,ASCE,2002,128(12):1519-1526.
    [21]Hsu T T C.Toward a unified nomenclature for reinforced concrete theory[J].Journal of Structural Engineering,ASCE,1996,122(3):275-283.
    [22]GB 50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.GB 50010-2010,Code for design of reinforced concrete silos[S].Beijing:China Architecture Industry Press,2010.(in Chinese)
    [23]陈永春,高红旗,马颖军,等.双向反复荷载下钢筋砼空间框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究[J].建筑科学,1995(2):13-20.Chen Yongchun,Gao Hongqi,Ma Yinjun,et al.Study on shear capacity and bond behavior of longitudinal reinforcement of RC space frame interior beam-column joints under biaxial cyclic loading[J].Building Science,1995(2):13-20.(in Chinese)
    [24]崔建宇,车轶,孙建刚,等.高层钢筋混凝土框架底层角节点抗震性能[J].重庆大学学报,2014,37(2):98-105.Cui Janyu,Che Yi,Sun Jiangang,et al.Seismic performance of first floor corner joints of high-rise reinforced concrete frame structure[J].Journal of Chongqing University,2014,37(2):98-105.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700