高粱AGO蛋白家族基因鉴定及表达分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification and Expression Analysis of AGO Protein Family Genes in Sorghum bicolor
  • 作者:林俊俊 ; 郭怀刚 ; 董洁静 ; 杨克军 ; 张海燕 ; 李佐同 ; 赵长江 ; 徐晶宇
  • 英文作者:LIN Junjun;GUO Huaigang;DONG Jiejing;YANG Kejun;ZHANG Haiyan;LI Zuotong;ZHAO Changjiang;XU Jingyu;Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Heilogjiang Province Education Department/Heilongjiang Engineering Technology Research Center for Crop Straw Utilization,Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement/College of Agronomy, Heilongjiang Bayi Agricultural University;
  • 关键词:SbAGOs ; 高粱 ; 表达分析物 ; 生物信息学分析
  • 英文关键词:SbAGOs;;Sorghum bicolor;;expression analysis;;bioinformatics analysis
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:黑龙江八一农垦大学农学院/黑龙江省现代农业栽培技术与作物种质改良重点实验室/黑龙江省秸秆资源化利用工程技术研究中心/黑龙江省普通高校寒地作物种质改良与栽培重点实验室;
  • 出版日期:2019-05-14 11:01
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:黑龙江八一农垦大学青年创新人才项目(CXRC2016-02);; 中央引导地方科技发展专项(ZY16A06)
  • 语种:中文;
  • 页:HNXB201907004
  • 页数:12
  • CN:07
  • ISSN:11-2265/S
  • 分类号:33-44
摘要
Argonaute (AGO)蛋白是RNA介导的沉默复合物RISC的核心成分,在小RNA、Dicer-like酶等的协同下共同激发RNA沉默反应。为阐明高粱中AGO蛋白的功能,本研究采用生物信息学的方法首次在高粱全基因组水平鉴定15个SbAGOs,分别定位于高粱的7条染色体上,根据氨基酸序列将其划分为三个亚家族。亚家族Ⅲ中SbAGO7和SbAGO3都含有3个外显子,亚家族Ⅱ中SbAGO4和SbAGO6都具有22个外显子,成员最多的亚家族Ⅰ中基因外显子数量介于19~24之间。其中,亚家族Ⅰ中SbAGO1-1和SbAGO1-3、SbAGO1-3和SbAGO1-4、SbAGO5-2和SbAGO5-4发生过基因复制事件,可能存在功能冗余现象。NCBI表达谱数据库分析发现,SbAGO1-1、SbAGO1-2、SbAGO1-3和SbAGO4在高粱不同组织器官和生长发育阶段均有较高表达,其中SbAGO1-1和SbAGO1-2、SbAGO1-3和SbAGO4表达时期和表达量基本一致,可能在调控高粱生长发育方面发挥协同作用。高温、干旱及高温与干旱复合逆境表达谱芯片数据分析发现,高温处理引起5个SbAGOs基因差异表达,干旱处理SbAGOs表达变化不明显,复合逆境引起7个SbAGOs基因差异表达;2个处理共同差异表达基因为SbAGO1-3、SbAGO1-1、SbAGO5-2和SbAGO3,表达量变化趋势相近。其中SbAGO1-1、SbAGO1-2、SbAGO1-3和SbAGO5-6下调表达,SbAGO3、SbAGO5-2、SbAGO1-4和SbAGO10上调表达。本研究结果为揭示SbAGO蛋白功能和发掘高粱的抗逆育种靶向基因资源提供了一定的理论依据。
        Argonaute(AGO) proteins are the core element of RNA-induced silencing complex(RISC)which could stimulate RNA silencing reaction with the cooperation of sRNA and Dicer-like protein. In order to fully understand the function of AGO proteins in sorghum(Sorghum bicolor(L.) Moench), this study used bioinformatics method to identify 15 SbAGOs at whole genome level of sorghum for the first time, which were located on seven chromosomes of sorghum and divided into three subfamilies according to the amino acid sequence. Among which, SbAGO7 and SbAGO3 belonging subfamilyⅢ had 3 exons and SbAGO4 and SbAGO6 in subfamily Ⅱ had 22 exons. The largest subfamily 19-24 extrons. Among them, genetic replication had occurred on SbAGO1-1 and SbAGO1-3, SbAGO1-3 and SbAGO1-4, SbAGO5-2 and SbAGO5-4 in subfamily Ⅰ, indicated there were functional redundancy. Through NCBI expression profiling database analysis, SbAGO1-1, SbAGO1-2, SbAGO1-3 and SbAGO4 were highly expressed in different tissues and organs and in different growth stage. Also, the expression period and the expression level of SbAGO1-1 and SbAGO1-2, SbAGO1-3 and SbAGO4 were similar. They may play a synergistic role in regulating the growth of sorghum. Through the data analysis of Chipgene expression profile under high temperature, drought and high temperature combine with drought stress, it was found that high temperature induced differential expression of five SbAGOs genes, and the changes of SbAGOs expression under drought stress was not obvious. Under combined stress, 7 SbAGO genes were differentially expressed; The common differentially expressed genes were SbAGO1-3,SbAGO1-1, SbAGO5-2 and SbAGO3 after two treatments and their expression changes were similar. SbAGO1-1, SbAGO1-2, SbAGO1-3 and SbAGO5-6 were down-regulated while SbAGO3, SbAGO5-2, SbAGO1-4 and SbAGO10 were up-regulated. The results of this study provide a theoretical basis for revealing and exploring the function of SbAGO proteins and the targeted genetic resources of sorghum resistance breeding.
引文
[1] Mallory A,Vaucheret H.Form,function,and regulation of ARGONAUTE proteins[J].Plant Cell,2010,22(12):3879-3889
    [2] Cao J Y,Xu Y P,Zhao L,Li S S,Cai X Z.Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level[J].Plant Molecular Biology,2016,92(1/2):39-55
    [3] Kapoor M,Arora R,Lama T,Nijhawan A,Khurana J P,Tyagi A K,Kapoor S.Genome-wide identification,organization and phylogenetic analysis of Dicer-like,Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice[J].BMC Genomics,2008,9:451
    [4] Qian Y,Cheng Y,Cheng X,Jiang H,Zhu S,Cheng B.Identification and characterization of Dicer-like,Argonaute and RNA-dependent RNA polymerase gene families in maize[J].Plant Cell Reports,2011,30(7):1347-1363
    [5] Bai M,Yang G S,Chen W T,Mao Z C,Kang H X,Chen G H,Yang Y H,Xie B Y.Genome-wide identification of Dicer-like,Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stress in Soplanum lycopersicum[J].Gene,2012,501(1):52-62
    [6] Nakanishi K,Ascano M,Gogakos T,Ishibe-Murakami S,Serganov A A,Briskin D,Morozov P,Tuschl T,Patel D J.Eukaryote-specific insertion elements control human argonaute silcer activity[J].Cell Reports,2013,3(6):1893-1900
    [7] Chandra B Y,Mehanathan M,Garima P,Manoj P.Identification,characterization and expression profiling of Dicer-Like,Argonaute and RNA-dependent RNA polymerase gene families in foxtail millet[J].Plant Molecular Biology Reporter,2015,33 (1):43-55
    [8] Zhao H L,Zhao K,Wang J,Chen X,Chen Z,Cai R H,Xiang Y.Comprehensive analysis of Dicer-Like,Argonaute,and RNA-dependent RNA polymerase gene families in grapevine(vitis Vinifera) [J].Journal of Plant Growth Regulation,2015,34(1):108-121
    [9] Nakasugi K,Crowhurst R N,Bally J,Craig C,Wood C C,Roger R P,Waterhouse P M.De novo transcriptome sequence assembly and analysis of RNA silencing gene of Nicotiana benthamiana[J].PLoS One,2013,8(3):e59534
    [10] Kwak P B,Tomari Y.The N domain of Argonaute drives duplex unwinding during RISC assembly[J].Nature Structural & Molecular Biology,2012,19(2):145-151
    [11] Parker J S,Roe S M,Bardord D.Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity[J].EMBO Journal,2004,23(24):4727-4737
    [12] Song J J,Joshua-Tor L.Argonaute and RNA-getting into the groove[J].Current Opinion Structural Biology,2006,16(1):5-11
    [13] Bartel D P.MicroRNAs:Genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297
    [14] Frank F,Hauver J,Sonenberg N,Nagar B.Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs[J].EMBO Journal,2012,31(17):3588-3595
    [15] Yigit E,Batista P J,Bei Y,Pang K M,Chen C C,Tolia N H,Joshua-Tor L,Mitani S,Simard M J,Mello C C.Analysis of the C.elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi[J].Cell,2006,127(4):747-757
    [16] Yang Y,Zhong J,Ouyang Y D,Yao J.The integrative expression and co-expression analysis of the AGO gene family in rice[J].Gene,2013,528(2):221-235
    [17] Zhai L,Sun W,Zhang K,Jia H,Liu L,Liu Z,Teng F,Zhang Z.Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize[J].Journal of Integrative Plant Biology,2014,56(11):1042-1052
    [18] 刘国元,吴嫚,于霁雯,裴文锋,喻树讯.雷蒙德氏棉Argonaute基因家族的生物信息学预测与分析[J].棉花学报,2014,26(5):411-419
    [19] 郭安源,朱其慧,陈新,罗静初.GSDS:基因结构显示系统[J].遗传,2007,29(8):1023-1026
    [20] Zhang H,Meltzer P,Davis S.RCircos:An R package for Circos 2D track plot[J].BMC Bioinformatics,2013,14(1):244
    [21] Yu J,Wang J,Lin W,Li S,Li H,Zhou J,Ni P,Dong W,Hu S,Zeng C,Zhang J,Zhang Y,Li R,Xu Z,Li S,Li X,Zheng H,Cong L,Lin L,Yin J,Geng J,Li G,Shi J,Liu J,Lv H,Li J,Wang J,Deng Y,Ran L,Shi X,Wang X,Wu Q,Li C,Ren X,Wang J,Wang X,Li D,Liu D,Zhang X,Ji Z,Zhao W,Sun Y,Zhang Z,Bao J,Han Y,Dong L,Ji J,Chen P,Wu S,Liu J,Xiao Y,Bu D,Tan J,Yang L,Ye C,Zhang J,Xu J,Zhou Y,Yu Y,Zhang B,Zhuang S,Wei H,Liu B,Lei M,Yu H,Li Y,Xu H,Wei S,He X,Fang L,Zhang Z,Zhang Y,Huang X,Su Z,Tong W,Li J,Tong Z,Li S,Ye J,Wang L,Fang L,Lei T,Chen C,Chen H,Xu Z,Li H,Huang H,Zhang F,Xu H,Li N,Zhao C,Li S,Dong L,Huang Y,Li L,Xi Y,Qi Q,Li W,Zhang B,Hu W,Zhang Y,Tian X,Jiao Y,Liang X,Jin J,Gao L,Zheng W,Hao B,Liu S,Wang W,Yuan L,Cao M,McDermott J,Samudrala R,Wang J,Wong G K,Yang H.The genomes of Oryza sativa:A history of duplications[J].PLoS Biology,2005,3(2):e38
    [22] Johnson S M,Lim F L,Finkler A,Fromm H,Slabas A R,Knight M R.Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress[J].BMC Genomics,2014,15(1):456
    [23] Mathelier A,Fornes O,Arenillas D J,Chen C Y,Denay G,Lee J,Shi W,Shyr C,Tan G,Worsley-Hunt R,Zhang A W,Parcy F,Lenhard B,Sandelin A,Wasserman W W.JASPAR 2016:A major expansion and update of the open-access database of transcription factor binding profiles[J].Nucleic Acids Research,2016,44(D1):D110-115
    [24] Bologna N G,Voinnet O.The Diversity,biogenesis,and activities of endogenous silencing small RNAs in Arabidopsis[J].Annual Review of Plant Biology,2014,65(1):473-503
    [25] Yu B,Wang H.Translational inhibition by microRNAs in plants[J].Progress in Molecular and Subcellular Biology,2010,50:41-57
    [26] Jaubert M,Bhattacharjee S,Mello A F,Perry K L,Moffett P.ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis[J].Plant Physiology,2011,156(3):1556-1564
    [27] Cao J Y,Xu Y P,Li W,Li S S,Rahman H,Cai X Z.Genome-wide identification of Dicer-like,Argonaute,and RNA-dependent RNA polymerase gene families in Brassica Species and functional analyses of their Arabidopsis homologs in resistance to Sclerotinia sclerotiorum[J].Frontiers in Plant Science,2016,7:1614
    [28] Zhu H,Hu F,Wang R,Zhou X,Sze S H,Liou L W,Barefoot A,Dickman M,Zhang X.Arabidopsis Argonaute 10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J].Cell,2011,145(2):242-256
    [29] Frank F,Hauver J,Sonenberg N,Nagar B.Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs[J].EMBO Journal,2012,31(17):3588-3595
    [30] Zilberman D,Cao X,Jacobsen S E.ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation[J].Science,2003,299(5607):716-719
    [31] Adenot X,Elmayan T,Lauressergues D,Boutet S,Bouché N,Gasciolli Ⅴ,Vaucheret H.DRE4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7[J].Current Biology,2006,16(9):927-932
    [32] Vaucheret H.Plant ARGONAUTES[J].Trends in Plant Science,2008,13(7):350-358
    [33] 罗子敬,卢楠,刘欣,崔彬彬,路超,孙宇涵,陈受宜,张万科,李云.种植与组培9年的转AhDREB1基因毛白杨耐盐性比较[J].核农学报,2017,31(8):1475-1485
    [34] 黄莹,徐志胜,王枫,宋雄,田畅,熊爱生.胡萝卜2个DcDREB-A1类转录因子基因的克隆与比较分析[J].核农学报,2015,29(1):29-39
    [35] Mittler R,Finka A,Goloubinoff P.How do plants feel the heat?[J].Trends in Biochemical Sciences,2012,37(3):118-125
    [36] 马廷臣,余蓉蓉,陈荣军,曾汉来,张端品.全基因组表达分析不同强度干旱胁迫下常规籼稻根系转录因子表达变化[J].核农学报,2013,27(9):1258-1269
    [37] 陈娜,迟晓元,程果,潘丽娟,陈明娜,王通,王冕,杨珍,禹山林.花生中低温胁迫相关转录因子基因的筛选[J].核农学报,2016,30(1):19-27
    [38] Wei K,Chen J,Wang Y,Chen Y,Chen S,Lin Y,Pan S,Zhong X,Xie D.Genome-wide analysis of bZIP-encoding genes in maize[J].DNA Research,2012,19(6):463-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700