钠冷快堆堆容器堆内构件用316型不锈钢及其持久断裂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Type 316 austenitic steels for reactor vessel and internals in sodium fast reactors and their creep rupture properties
  • 作者:燕春光 ; 李雅平 ; 王明政
  • 英文作者:YAN Chun-guang;LI Ya-ping;WANG Ming-zheng;Division of Reactor Engineering Technology Research, China Institute of Atomic Energy;
  • 关键词:316型不锈钢 ; 钠冷快堆 ; 持久强度 ; 持久塑性
  • 英文关键词:type 316 stainless steel;;sodium fast reactor;;creep rupture strength;;creep rupture ductility
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:中国原子能科学研究院反应堆工程技术研究部;
  • 出版日期:2018-12-15
  • 出版单位:钢铁研究学报
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金青年科学基金资助项目(11705286)
  • 语种:中文;
  • 页:IRON201812002
  • 页数:8
  • CN:12
  • ISSN:11-2133/TF
  • 分类号:4-11
摘要
316型不锈钢用于钠冷快堆堆容器堆内构件的制造已成为各发展快堆国家的共识,如何提高持久断裂性能成为快堆用316型不锈钢的研究重点。概述了316型不锈钢在国外快堆中的应用现状,总结了成分(C、N、Mo、P)、组织(晶粒度和铁素体)及环境介质(中子辐照环境和高温钠介质)等因素对其持久强度和持久伸长率的影响规律和机理,介绍了目前中国示范快堆用316不锈钢的发展现状,最后提出了快堆用316不锈钢的发展建议。
        The type 316 stainless steels(316 ss) are widely used as structural materials for reactor vessel and internals in sodium fast reactors(SFRs), which are agreed by designers of SFRs all over the world. Creep rupture properties become one of the important properties of the 316 ss. The application of 316 ss in fast reactors at abroad was briefly reviewed. Then the effect of alloying elements, microstructure and environmental media like neutron irradiation and sodium on creep rupture properties was summarized. More specifically, the alloying elements consist of carbon, nitrogen, molybdenum and phosphorus, while the microstructure consists of grain size and ferrite content. Finally, the current development status of 316 ss for demonstration fast reactors in China was introduced. Furthermore, some suggestions were also proposed.
引文
[1] 徐銤. 钠冷快堆的安全性[J]. 自然杂志, 2013(2):79.(Xu M. Safety on sodium cooled fast reactor[J]. Chinese Journal of Nature, 2013(2):79.)
    [2] 王琦安, 龙斌, 王西涛, 等. 中国钠冷快堆材料研发体系的研究[J]. 钢铁研究学报, 2014, 26(9):1.(Wang Q A, Long B, Wang X T, et al. Study on research and development system of materials for sodium-cooled fast reactor technology[J]. Journal of Iron and Steel Research, 2014, 26(9):1.)
    [3] Mathew M D. Evolution of creep resistant 316 stainless steel for sodium cooled fast reactor applications[J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3):151.
    [4] Mannan S, Chetal S, Raj B, et al. Selection of materials for prototype fast breeder reactor[J]. Transactions of the Indian Institute of Metals, 2003, 56(2):155.
    [5] Schirra M. Creep rupture strength and creep tests on the EFR structural material 316L(N), DIN 1.4909[J]. Nuclear Engineering and Design, 1994, 147(1):63.
    [6] Aktaa J, Horsten M G, Schmitt R. Effects of hold time and neutron irradiation on the low-cycle fatigue behaviour of type 316-CL and their consideration in a damage model[J]. Nuclear Engineering and Design, 2002, 213(2/3):111.
    [7] Onizawa T, Kato S, Hasebe S, et al. JNC TN9450 2001-005 relaxation test data collection of the FBR structural material[R]. Ibaraki: Japan Nuclear Cycle Development Institute, 2001.
    [8] Nakazawa T, Kimura H, Kimura K, et al. Advanced type stainless steel 316FR for fast breeder reactor structures[J]. Journal of Materials Processing Technology, 2003, 143-144:905.
    [9] Brinkman C R. Elevated-temperature mechanical properties of an advanced-type 316 stainless steel[J]. Journal of Pressure Vessel Technology, 2001, 123(1):75.
    [10] Takahashi Y. Evaluation of creep-fatigue life prediction methods for low-carbon nitrogen-added 316 stainless steel[J]. Journal of Pressure Vessel Technology, 1999, 121(2):527.
    [11] Nakazawa T, Kimura H, Tendo M, et al. Effects of carbon, molybdenum, and phosphorus contents on creep rupture properties of low carbon medium nitrogen type 316 stainless steels[J]. Journal of the Japan Institute of Metals and Materials, 2000, 64(10):926.
    [12] Nakazawa T, Kimura H, Komatsu H, et al. Relationship between creep rupture properties and microstructures of type 316 stainless steels with different carbon and nitrogen contents[J]. Tetsu-to-Hagane, 1998, 84(8):33.
    [13] Nakazawa T, Fujita N, Kimura H, et al. Effects of carbon content and chromium segregation on creep rupture properties of low carbon and medium nitrogen type 316 stainless steel[J]. Tetsu-to-Hagane, 1997, 83(5):317.
    [14] Nakazawa T, Abo H, Tanino M, et al. Effects of carbon, nitrogen, and molybdenum on creep properties of type 316 stainless steel[J]. Design and Analysis, 1989, 2:1041.
    [15] Nakazawa T, Abo H, Tanino M, et al. Improvement in the long term creep rupture strength of SUS 316 steel for fast breeder reactors by nitrogen addition[J]. Tetsu-to-Hagane, 1989, 75(8):1346.
    [16] Yang Y, Busby J T. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels[J]. Journal of Nuclear Materials, 2014, 448(1):282.
    [17] Lai J K, Wickens A. Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J]. Acta Metallurgica, 1979, 27(2):217.
    [18] Hsieh C C, Wu W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels[J]. ISRN Metallurgy, 2012, 2012:16.
    [19] Uchida H, Fujiwara M. The effect of nitrogen content on creep rupture strength of low carbon type 316 austenitic stainless steel[J]. Tetsu-to-Hagane, 2009, 82(6):514.
    [20] Nakazawa T, Abo H, Tanino M, et al. Effects of carbon, nitrogen, and phosphorus on creep rupture ductility of high purity Ni-Cr austenitic steels[J]. Tetsu-to-Hagane, 1989, 75(5):825.
    [21] Nakazawa T, Komatsu H, Takahashi Y, et al. Microstructure and grain size dependence of creep and creep-fatigue properties of low carbon medium nitrogen type 316 steel[J]. Tetsu-to-Hagane, 1998, 84(2):58.
    [22] Nakazawa T, Kimura H, Komatsu H. Effect of grain sise on high temperature properties of type 316 stainless steels[J]. Journal of High Pressure Institute of Japan, 2001, 39(5):16.
    [23] Mannan S L, Rodriguez P. Effect of grain size on creep rate in type 316 stainless steel at 873 and 973 K[J]. Metal Science Journal, 1983, 17(2):63.
    [24] Takahashi Y. Long-term high temperature strength of 316FR steel[C]//Joint American Society of Mechanical Engineers (ASME)/Japan Society of Mechanical Engineers (JSME) Pressure Vessels and Piping Conference. Honolulu:1995.
    [25] Cullen T, Davis M. Influence of Nitrogen on the creep-rupture properties of type 316 steel[M]//Elevated temperature properties as influenced by Nitrogen additions to types 304 and 316 austenitic stainless steels. Philadelphia: American Society for Testing and Materials, 1973:60.
    [26] Nakazawa T, Fujita N, Kimura H, et al. High temperature properties and micro-structure of low carbon-medium nitrogen type 316 weld metals for fast breeder reactor structures[J]. Tetsu-to-Hagane, 1994, 80(10):783.
    [27] Yamashita T, Nagae Y, Satoh K, et al. Strength of 316FR joints welded by type 316FR/16-8-2 metal[J]. Journal of Pressure Vessel Technology, 2016, 138(2):024501.
    [28] Miyaji N, Abe Y, Ukai S, et al. Post-irradiation creep rupture properties of FBR grade 316 SS structural material[J]. Journal of Nuclear Materials, 1999, 271-272:173.
    [29] Miyaji N, Abe Y, Asayama T, et al. Effects of neutron irradiation on tensile and creep properties of stainless steels[J]. Journal of the Society of Materials Science Japan, 1997, 46(5):500.
    [30] Aoto K, Abe Y, Shibahara I, et al. Effects of neutron irradiation on creep properties of FBR grade 316 stainless steel[C]//Specialists meeting on influence of low dose irradiation on the design criteria of fixed internals in fast reactors. Gif-sur-Yvette:1993.
    [31] Mishra M P, Borgstedt H U, Frees G, et al. Microstructural aspects of creep-rupture life of type 316L(N) stainless steel in liquid sodium environment[J]. Journal of Nuclear Materials, 1993, 200(2):244.
    [32] Tai A, Abe Y, Miyaji N, et al. Evaluation procedures for irradiation effects and sodium environmental effects for the structural design of Japanese fast breeder reactors[J]. Journal of Pressure Vessel Technology, 2001, 123(1):49.
    [33] Furukawa T, Yoshida E, Komine R, et al. Effect of sodium environment on creep and fatigue properties of FBR grade type 316 stainless steel[J]. Journal of the Society of Materials Science Japan, 1999, 48(12):1373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700