平原河网地区地下水脆弱性评价体系构建及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and Application of Groundwater Vulnerability Assessment Method System in Plain River Network Area
  • 作者:吴建强 ; 王敏 ; 陈宇 ; 阮俊杰 ; 鄢忠纯 ; 熊丽君 ; 东阳 ; 黄沈发
  • 英文作者:WU Jianqiang;WANG Min;CHEN Yu;RUAN Junjie;YAN Zhongchun;XIONG Lijun;DONG Yang;HUANG Shenfa;Shanghai Academy of Environmental Science;College of Environmental Science and Engineering, Tongji University;
  • 关键词:平原河网 ; 地下水 ; 脆弱性 ; 评价体系
  • 英文关键词:Plain River Network;;groundwater;;vulnerability;;assessment system
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:上海市环境科学研究院;同济大学环境科学与工程学院;
  • 出版日期:2017-11-18
  • 出版单位:生态环境学报
  • 年:2017
  • 期:v.26
  • 基金:国家自然科学基金项目(51679141);; 上海市环保局重大科研项目(沪环科2016-6)
  • 语种:中文;
  • 页:TRYJ201711001
  • 页数:8
  • CN:11
  • ISSN:44-1661/X
  • 分类号:5-12
摘要
地下水污染形势严峻,脆弱性评价是区域地下水资源保护和污染防治的重要前提。平原河网地区地表水系复杂,城市化程度高,常规DRASTIC模型难以准确评价其地下水脆弱性。文章根据平原河网地区特点,建立了一套包括地下水埋深、净补给量、含水层介质、土壤带介质等7个本质脆弱性指标和地表水系、地下工程2个特殊脆弱性指标在内的方法体系,并以上海市金山区为例进行了地下水脆弱性评价。结果表明,地下水埋深、地下水净补给量和含水层厚度是影响评价区域本质脆弱性的主要指标,3者评价得分均在3~9之间,其中地下水埋深和净补给量得分为6的区域面积最大,分别为219.35 km~2和187.74 km~2,含水层厚度以得分为8的区域面积最大,达到286.01 km~2。金山区地表水系分布广泛,加上水质较差,其河流水质、河网密度、河流等级的脆弱性评价得分大多为6~10,相比地下工程,这3个指标对该区域的特殊脆弱性影响更大。金山区地下水综合脆弱性评价中,三级和四级面积较大,分别为274.49 km~2和157.82 km~2,两者面积之和占整个评价区的67.93%;三级区域广泛分布于整个评价区范围之内,五级脆弱性零星分布于南部和中部区域。评价结果与实际调研情况相符,能够真实地反映评价区浅层地下水脆弱性程度。该方法体系可为区域地下水环境管理及污染防治工作提供技术支撑和科学依据。
        Groundwater pollution is increasingly serious in China. Vulnerability assessment is an important premise of regional groundwater resources protection and pollution prevention. Plain river network area has a high degree of urbanization, and the surface water system is complex. Groundwater vulnerability assessment method system including seven natural vulnerability indices(i.e. groundwater depth, net recharge, aquifer medium, soil belt medium, topography, unsaturated zone medium and hydraulic transmission system) and two special vulnerability method systems(i.e. surface water system, underground engineering) were built in this paper. In addition, groundwater vulnerability of Jinshan District in Shanghai was assessed as an example. The results showed that the depth of groundwater, net recharge and aquifer thickness were the main indicators affecting vulnerability assessment, and the evaluation scores of three aspects were 3~9. The groundwater depth and net recharge indices scored 6 had the maximum area, which was 219.35 km~2 and 187.74 km~2, respectively. The aquifer thickness index scored 8 had the maximum area, up to 286.01 km~2. Due to widely spread river system and poor water quality, the water quality, river density, river level vulnerability assessment scored higher with which was 6~10. And the surface water system had greater impact on special vulnerability compared to the underground engineering method system. In the comprehensive vulnerability evaluation of groundwater in Jinshan District, the area of "medium"level and "high" level were larger than the others, which was 274.49 km~2 and 157.82 km~2, respectively, occupied 67.93% of the total areas. As for the distribution, the "medium" level was widely distributed throughout the evaluation area, while "high" vulnerability levels mainly distributed in the southern and central regions. Consequently, the assessment results were in agreement with survey data, which could reflect the degree of shallow groundwater vulnerability in evaluation area. The construction of the method system provides basic support and scientific basis for the prevention of regional groundwater pollution and the formulation of control management approach.
引文
AMBIGA K,ANNADURAI R.2017.Drastic method and correlation with chromium level due to tannery industry in RANIPET area groundwater vulnerability assessment,Vellore district,Tamilnadu,India[J].Applied Ecology&Environmental Research,15(3):1393-1406.
    ANTONAKOS A K,LAMBRAKIS N J.2007.Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates,based on the drastic model,an example from NE Korinthia,Greece[J].Journal of Hydrology,333(2-4):288-304.
    FRITCH T G,MCKNIGHT C L,YELDERMAN J C.2000.An aquifer vulnerability assessment of the Paluxy aquifer,central Texas,USA,using GIS and modified DRASTIC approach[J].Environmental Management,25(3):337-345.
    HAMZA M H,ADDED A,RODRIGUEZ R,et al.2007.A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region(Metline-Ras Jebel-Raf Raf aquifer,Northern Tunisia)[J].Journal of Environmental Management,84(1):12-19.
    HANEN J,MOUNIRA Z,MOHAMED O,et al.2017.GIS based DRASTIC model for groundwater vulnerability assessment:Case study of the shallow mio-plio-quaternary aquifer(Southeastern Tunisia)[J].Water Resources,44(4):595-603.
    IQBAL J,GORAI A,KATPATAL Y,et al.2015.Development of GIS-based fuzzy pattern recognition model(modified DRASTIC model)for groundwater vulnerability to pollution assessment[J].International Journal of Environmental Science&Technology,12(10):3161-3174.
    MAHMOOD S N,KUMARS E.2016.Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model[J].Environmental Monitoring&Assessment,188(1):19-36.
    WORRALL F,BESIEN T.2005.The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells[J].Journal of Hydrology,303(1-4):92-107.
    白利平,王业耀.2009.地下水脆弱性评价研究综述[J].工程勘察,(4):43-48.
    蔡文静,张延平.2017.基于Arc GIS的DRASTIC法地下水脆弱性评价应用研究[J].地下水,39(1):18-21.
    郭高轩,李宇,许亮,等.2014.北京平原区第四系地下水污染风险评价[J].环境科学,35(2):562-568.
    江海浩,周书葵,陈朝猛,等.2015.基于改进DRASTIC模型GIS地下水U(VI)污染风险评价[J].检测与评价,(3):113-117.
    雷静,张思聪.2003.唐山市平原区地下水脆弱性评价研究[J].环境科学学报,23(1):94-99.
    李定龙,王宗庆,杨彦.2013.基于综合方法的区域浅层地下水脆弱性评价--以常州市为例[J].环境化学,32(11):2099-2108.
    李玮.2013.再生水灌溉条件下浅层地下水污染风险评价方法研究[D].北京:中国地质大学(北京).
    刘玉梅.2014.再生水河道利用地下水污染风险评估--以潮白河受水区为例[D].北京:中国地质大学.
    马天海,朱晓明,潘扎荣.2014.太湖流域典型平原地区浅层地下水脆弱性研究[J].地下水,36(6):53-56.
    孟素花,费宇红,张兆吉,等.2011.华北平原地下水脆弱性评价[J].中国地质,38(6):1607-1613.
    米热古丽·麦麦提.2013.地下水污染现状调查及处理[J].水利规划与设计,(11):35-37.
    潘宏雨,冯颖俊.2015.基于DRASTIC的AHP在洛阳市地下水环境影响评价中的应用[J].安徽农业科学,43(30):203-205.
    乔萌萌,杨洁,周芮,等.2017.基于DRASTIC模型的地下水脆弱性研究综述[J].苏州科技大学学报(工程技术版),30(2):37-44.
    滕彦国,苏洁,翟远征,等.2012.地下水污染风险评价的迭置指数法研究综述[J].地球科学进展,27(10):1140-1147.
    王红旗,陈美阳,李仙波.2009.顺义区地下水水源地脆弱性评价[J].环境工程学报,3(4):755-758.
    严明疆,申建梅,张光辉,等.2006.人类活动对滹滏平原地下水资源脆弱性影响分析[J].地球学报,27(增刊):217-222.
    严明疆,申建梅,张光辉,等.2009.人类活动影响下的地下水脆弱性演变特征及其演变机理[J].干旱区资源与环境,23(2):1-5.
    姚文峰.2007.基于过程模拟的地下水脆弱性评价[D].北京:清华大学.
    张川,唐蕴,唐克旺.2016.呼伦贝尔高平原地区浅层地下水脆弱性评价[J].水资源保护,32(03):19-23,32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700