3D挤压成型生物打印含细胞水凝胶的理化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical and chemical properties of 3D extrusive bioprinting cell-encapsulated hydrogel
  • 作者:顾亚伟 ; 李牧 ; 范子文 ; 王龙 ; 李泽遥 ; 陈昶
  • 英文作者:Gu Ya-wei;Li Mu;Fan Zi-wen;Wang Long;Li Ze-yao;Chen Chang;Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine;
  • 关键词:水凝胶 ; 墨水 ; 组织工程 ; 生物材料 ; 3D生物打印 ; 挤压成型
  • 英文关键词:,Hydrogels;;Ink;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:同济大学附属上海市肺科医院胸外科;
  • 出版日期:2018-04-28 14:05
  • 出版单位:中国组织工程研究
  • 年:2018
  • 期:v.22;No.843
  • 基金:上海市科学技术委员会科研计划项目(15JC1490900)~~
  • 语种:中文;
  • 页:XDKF201822025
  • 页数:6
  • CN:22
  • ISSN:21-1581/R
  • 分类号:145-150
摘要
背景:目前3D生物打印技术可用于打印无细胞材料和含细胞材料,在解决器官、补片短缺的问题上开辟了新方法。目的:综述近年国内外有关3D挤压成型生物打印的研究,总结该打印方法的原理、所用水凝胶种类、水凝胶的生物理化性能等最新进展。方法:以"3D bioprinting/three-dimensional bioprinting;extrusion/extrusive;cell-laden/cells/cellular;hydrogel"为检索词,应用计算机搜索Pub Med数据库2006至2016年的相关文献。结果与结论:3D挤压成型生物打印技术生产原理简单,过程可控,产能较少,不仅可通过快速成型个性化地制造器官支架,而且可使细胞可控地分布于支架中,更加精确地构建符合生理空间的含细胞组织。然而,细胞在水凝胶内的生物学行为、水凝胶与细胞之间的相互作用、打印精度微纳米级别的提升目前仍在探索和研究阶段。随着这些问题的深入探讨和逐步解决,3D生物打印有望在未来成为组织工程学中的新的构建方法。
        BACKGROUND: 3D bioprinting technology can be used to print non-cell and cell-laden materials, which provides a new pathway to solve the lack of transplanted organs or bio-patches.OBJECTIVE: To conclude the printing mechanisms, kinds, biological and mechanical characteristics of hydrogels based on the development and advance in 3D extrusive bioprinting hydrogel. METHODS: A computer-based search of Pub Med database was performed to retrieve relevant articles published between 2006 and 2016, with the keywords of "3D bioprinting/three-dimensional bioprinting; extrusion/extrusive; cell-laden/cells/cellular; hydrogel". RESULTS AND CONCLUSION: 3D bioprinting is characterized as simple principle, controlled process, and less energy production, which can manufacture personalized organs or scaffolds by rapid prototyping technology, and precisely construct tissues with controllably distributed cells to mimics the physiological circumstance. However, the following aspects are still at an initial stage, including the biological behaviors of cells in hydrogel, the interactions between cells and hydrogels and the elevation of micro-nano precision of printing. With solutions to these problems, 3D bioprinting may become another novel construction method in the tissue engineering.
引文
[1]Langer R,Vacanti JP.Tissue engineering.Science.1993;260(5110):920-926.
    [2]Hutmacher DW.Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives.J Biomater Sci Polym Ed.2001;12(1):107-124.
    [3]Hutmacher DW,Schantz T,Zein I,et al.Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.J Biomed Mater Res.2001;55(2):203-216.
    [4]Colacino JA.3D human tissue culture:modeling environmental effects on the stem cell epigenome.Epigenomics.2016;8(11):1453-1457.
    [5]Caiazzo M,Okawa Y,Ranga A,et al.Defined three-dimensional microenvironments boost induction of pluripotency.Nat Mater.2016;15(3):344-352.
    [6]Nakamura M,Iwanaga S,Henmi C,et al.Biomatrices and biomaterials for future developments of bioprinting and biofabrication.Biofabrication.2010;2(1):014110.
    [7]Fedorovich NE,Schuurman W,Wijnberg HM,et al.Biofabrication of osteochondral tissue equivalents by printing topologically defined,cell-laden hydrogel scaffolds.Tissue Eng Part C Methods.2012;18(1):33-44.
    [8]Derby B.Printing and prototyping of tissues and scaffolds.Science.2012;338(6109):921-926.
    [9]Nakamura M,Nishiyama Y,Henmi C,et al.Inkjet bioprinting as an effective tool for tissue fabrication[C].proceedings of the NIP&Digital Fabrication Conference,F,2006.
    [10]Kirchmajer DM,Iii RG,Panhuis MIH.An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing.J Mater Chem B.2015;3(20):4105-4117.
    [11]Kilpatrick JI,Revenko I,Rodriguez BJ.Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.Adv Healthc Mater.2015;4(16):2456-2474.
    [12]Zhao Y,Li Y,Mao S,et al.The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.Biofabrication.2015;7(4):045002.
    [13]Poveda-Reyes S,Moulisova V,Sanmartin-Masia E,et al.Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation.Macromol Biosci.2016;16(9):1311-1324.
    [14]Slaughter BV,Khurshid SS,Fisher OZ,et al.Hydrogels in regenerative medicine.Adv Mater.2009;21(32-33):3307-3329.
    [15]Jungst T,Smolan W,Schacht K,et al.Strategies and Molecular Design Criteria for 3D Printable Hydrogels.Chem Rev.2016;116(3):1496-1539.
    [16]Kang HW,Lee SJ,Ko IK,et al.A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.Nat Biotechnol.2016;34(3):312-319.
    [17]Pescosolido L,Vermonden T,Malda J,et al.In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications.Acta Biomater.2011;7(4):1627-1633.
    [18]Seliktar D.Designing cell-compatible hydrogels for biomedical applications.Science.2012;336(6085):1124-1128.
    [19]Gasperini L,Mano JF,Reis RL.Natural polymers for the microencapsulation of cells.J R Soc Interface.2014;11(100):20140817.
    [20]Wolf MT,Daly KA,Brennan-Pierce EP,et al.A hydrogel derived from decellularized dermal extracellular matrix.Biomaterials.2012;33(29):7028-7038.
    [21]Panwar A,Tan LP.Current Status of Bioinks for Micro-Extrusion-Based3D Bioprinting.Molecules(Basel,Switzerland).2016;21(6).pii:E685.doi:10.3390/molecules21060685.
    [22]Nichol JW,Koshy ST,Bae H,et al.Cell-laden microengineered gelatin methacrylate hydrogels.Biomaterials.2010;31(21):5536-5544.
    [23]Sakloetsakun D,Bernkop-Schnürch A.Thiolated chitosans.J Drug Deliv Sci Technol.2010;20(1):63-69.
    [24]Khetan S,Burdick JA.Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels.Biomaterials.2010;31(32):8228-8234.
    [25]Toh WS,Lim TC,Kurisawa M,et al.Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.Biomaterials.2012;33(15):3835-3845.
    [26]Kang LH,Armstrong PA,Lee LJ,et al.Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.Ann Biomed Eng.2017;45(2):360-377.
    [27]Schuurman W,Levett PA,Pot MW,et al.Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs.Macromol Biosci.2013;13(5):551-561.
    [28]Cheng E,Xing Y,Chen P,et al.A p H-triggered,fast-responding DNA hydrogel.Angew Chem Int Ed Engl.2009;48(41):7660-7663.
    [29]Li C,Faulkner-Jones A,Dun AR,et al.Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting.Angew Chem Int Ed Engl.2015;54(13):3957-3961.
    [30]Ozbolat IT,Hospodiuk M.Current advances and future perspectives in extrusion-based bioprinting.Biomaterials.2016;76:321-343.
    [31]Blaeser A,Duarte Campos DF,Puster U,et al.Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.Adv Healthc Mater.2016;5(3):326-333.
    [32]Tabriz AG,Hermida MA,Leslie NR,et al.Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.Biofabrication.2015;7(4):045012.
    [33]Bertassoni LE,Cardoso JC,Manoharan V,et al.Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.Biofabrication.2014;6(2):024105.
    [34]Discher DE,Mooney DJ,Zandstra PW.Growth factors,matrices,and forces combine and control stem cells.Science.2009;324(5935):1673-1677.
    [35]Engler AJ,Caragkrieger C,Johnson CP,et al.Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity:scar-like rigidity inhibits beating.J Cell Sci.2008;121(22):3794-3802.
    [36]Zimmermann WH,Schneiderbanger K,Schubert P,et al.Tissue Engineering of a Differentiated Cardiac Muscle Construct.Circ Res.2002;90(2):223-230.
    [37]Pang Y,Wang X,Lee D,et al.Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force.Biomaterials.2011;32(15):3776-3783.
    [38]Diederich VE,Studer P,Kern A,et al.Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.Biotechnol Bioeng.2013;110(5):1508-1519.
    [39]Hockaday LA,Kang KH,Colangelo NW,et al.Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds.Biofabrication.2012;4(3):035005.
    [40]Patwari P,Lee RT.Mechanical Control of Tissue Morphogenesis.Circ Res.2008;103(3):234-243.
    [41]Ulrich TA,De Juan Pardo EM,Kumar S.The mechanical rigidity of the extracellular matrix regulates the structure,motility,and proliferation of glioma cells.Cancer Res.2009;69(10):4167-4174.
    [42]Abraham S,Brahim S,Ishihara K,et al.Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility.Biomaterials.2005;26(23):4767-4778.
    [43]Tse M,Uludag H,Sefton MV,et al.Secretion of recombinant proteins from hydroxyethyl methacrylate-methyl methacrylate capsules.Biotechnol Bioeng.996;51(3):271-280.
    [44]Jones TD,Kefi A,Sun S,et al.An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading.Adv Med.2016;2016:7363579.
    [45]Cui X,Breitenkamp K,Lotz M,et al.Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation.Biotechnol Bioeng.2012;109(9):2357-2368.
    [46]Skardal A,Devarasetty M,Kang HW,et al.A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.Acta Biomater.2015;25:24-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700