二维多层状Ti_3C_2T_x-MXene/聚吡咯纳米线复合材料的制备及电容性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Capacitive Property of Two-Dimensional Multilayer Ti_3C_2T_x-MXene/PPy-NW Composite Material
  • 作者:陈露 ; 简选 ; 何敏 ; 张咪咪 ; 陈晓蝶 ; 高楼军 ; 梁镇海
  • 英文作者:CHEN Lu;JIAN Xuan;HE Min;ZHANG Mi-mi;CHEN Xiao-die;GAO Lou-jun;LIANG Zhen-hai;Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University;Clean Chemical Research Institute, College of Chemistry and Chemical Engineering, Taiyuan University of Technology;
  • 关键词:二维多层结构 ; Ti_3C_2T_x-MXene ; 聚吡咯纳米线 ; 电容性能
  • 英文关键词:two-dimensional multilayer structure;;Ti_3C_2T_x-MXene;;polypyrrole nanowires;;capacitive property
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:延安大学化学与化工学院陕西省化学反应工程重点实验室;太原理工大学化学化工学院洁净化工研究所;
  • 出版日期:2019-05-07 16:31
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.112
  • 基金:延安大学博士科研启动基金(No.YDBK2017-28),延安大学校级科研项目(No.YDQ2018-16);; 陕西省大学生创新创业训练项目(No.201820053)资助
  • 语种:中文;
  • 页:DHXX201902013
  • 页数:8
  • CN:02
  • ISSN:35-1172/O6
  • 分类号:145-152
摘要
本文以体相材料MAX(Ti_3AlC_2)为基底,采用氢氟酸刻蚀法得到二维多层状Ti_3C_2T_x-MXene,将一维聚吡咯纳米线(polypyrrole nanowires,PPy-NW)与二维多层状Ti_3C_2T_x-MXene相结合,成功地制备出Ti_3C_2T_x-MXene/PPy-NW复合电极材料.并分别利用扫描电子显微镜(scanning electron microscope,SEM)、X-射线衍射(X-ray diffraction,XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy,FTIR)及X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对其进行了形貌和结构表征.最后通过电化学测试表明,二维多层状Ti_3C_2T_x-MXene/PPy-NW复合电极材料在扫描速率为10 m V·s~(-1)时比电容可达374 F·g~(-1),高于纯PPy-NW(304 F·g~(-1)),当扫描速率增加至200 m V·s~(-1)时,仍可保留原比电容值的72.4%,展现出良好的倍率性能.而且在电流密度为5 A·g~(-1)下经过2000次的循环伏安实验,其电容保持率可达91.6%,具有良好的循环稳定性.总之,二维多层状Ti_3C_2T_x-MXene和一维PPy-NW的复合有效地提升了电极材料的电容性能,在电化学能源储存方面有着巨大的应用前景.
        In this paper, the two-dimensional multilayered Ti_3C_2T_x-MXene was obtained by hydrofluoric acid etching method on the bulk phase material MAX(Ti_3AlC_2) substrate. The two-dimensional multilayered Ti_3C_2T_x-MXene/PPy-NW composite electrode materials were successfully prepared by combining the one-dimensional polypyrrole nanowires(PPy-NW) with two-dimensional multilayered Ti_3C_2T_x-MXene. The morphologies and compositions of the synthetic materials were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS). Electrochemical tests showed that Ti_3C_2T_x-MXene/PPy-NW composite electrode material could reach 374 F·g~(-1) at a scanning rate of 10 m V·s~(-1), which is higher than pure PPy-NW(304 F·g~(-1)). When the scanning rate increased to 200 m V·s~(-1), it could still retain 72.4 % of the original specific capacitance value, showing good multiplying performance. Finally, the Ti_3C_2T_x-MXene/PPy-NW composite electrode material still retained good cycling stability even at high current density of 5 A·g~(-1)(91.6% capacitance retention after 2000 cycles). In summary, the composite of two-dimensional multilayered Ti_3C_2T_x-MXene and one-dimensional PPy-NW effectively improved the capacitance performance of electrode materials, and had great application prospect in electrochemical energy storage.
引文
[1]Da Y M,Liu J X,Zhou L,et al.Engineering 2D architectures toward high-performance micro-supercapacitor[J].Advanced Materials,2019,31(1):1802793-1802821.
    [2]Cai X K,Luo Y T,Liu B L,et al.Preparation of 2D material dispersions and their applications[J].Chemical Society Reviews,2018,47(16):6224-6266.
    [3]Peng L L,Fang Z W,Zhu Y,et al.Holey 2D nanomaterials for electrochemical energy storage[J].Advanced Energy Materials,2018,8(9):1702179.
    [4]Huang K,Li Z J,Lin J,et al.Two-dimensional transition metal carbides and nitrides(MXenes)for biomedical applications[J].Chemical Society Reviews,2018,47(14):5101-5532.
    [5]Li S L,Tsukagoshi K,Orgiu E,et al.Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J].Chemical Society Reviews,2016,45(1):118-151.
    [6]Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3Al C2[J].Advanced Materials,2011,23(37):4248-4253.
    [7]Lukatskaya M R,Mashtalir O,Ren C E,et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J].Science,2013,341(6153):1502-1505.
    [8]Hu M M,Li Z J,Hu T,et al.High-capacitance mechanism for Ti3C2TxMXene by in situ electrochemical Raman spectroscopy investigation[J].ACS Nano,2016,10(12):11344-11350.
    [9]Wang J,Tang J,Ding B,et al.Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials[J].Nature Communications,2017,8:15717.
    [10]Boota M,Anasori B,Voigt C,et al.Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide(MX-ene)[J].Advanced Materials,2016,28(7):1517-1522.
    [11]Alhabed M,Maleski K,Anasori B,et al.Guidelines for synthesis and processing of two-dimensional titanium carbide(Ti3C2TxMXene)[J].Chemistry of Materials,2017,29(18):7633-7644.
    [12]Jian X,Li J G,Yang H M,et al.Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors[J].Carbon,2017,114:533-543.
    [13]Lei W,He P,Wang Y H,et al.Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage[J].Electrochimica Acta,2014,132:112-117.
    [14]Chaudhari H K,Kelkar D S.Investigation of structure and electrical conductivity in doped polyaniline[J].Polymer International,2015,42(4):380-384.
    [15]Wei Y,Zhang X L,Wu X Y,et al.Carbon quantum dots/Ni-Al layered doble hydroxide composite for high-performance supercapacitor[J].RSC Advances,2016,6(45):39317-39322.
    [16]Fu H,Du Z J,Zou W,et al.Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode[J].Journal of Materials Chemistry A,2013,1(47):14943-14950.
    [17]Yan P T,Zhang R J,Jia J,et al.Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte[J].Journal of Power Sources,2015,284:38-43.
    [18]Naguib M,Presser V,Lane N,et al.Synthesis of a new nanocrystalline titaniumaluminum fluoride phase by reaction of Ti2Al C3with hydrofluoric acid[J].RSC Advances,2011,1:1493-1499.
    [19]Rakhi R B,Ahmed B,Hedhili M N,et al.Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTxMXene electrodes for supercapacitor applications[J].Chemistry of Materials,2015,27(15):5314-5323.
    [20]Ghidiu M,Halim J,Kota S,et al.Ion-exchange and cation solvation reactions in Ti3C2MXene[J].Chemistry of Materials,2016,28(10):3507-3514.
    [21]Guo X,Xie X Q,Choi S,et al.Sb2O3/MXene(Ti3C2Tx)hybrid anode materials with enhanced performance for sodium-ion batteries[J].Journal of Materials Chemistry A,2017,5(24):12445-12452.
    [22]Halim J,Cook K M,Naguib M,et al.X-ray photoelectron spectroscopy of select multi-layered transition metal carbides(MXenes)[J].Applied Surface Science,2016,362:406-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700