等离子体激励对串列叶栅流动分离抑制效果的数值仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Plasma Excitation on the Effect of Tandem Cascade Flow Separation Suppression
  • 作者:陈景波 ; 丁均梁 ; 张海灯 ; 郭基联
  • 英文作者:CHEN Jing-bo;DING Jun-liang;ZHANG Hai-deng;GUO Ji-lian;No.1 Middle School of Lanxi City,Zhejiang Province;Air Force Engineering University Plasma Dynamic Laboratory;Air Force Engineering University, Aviation Engineering Institute;
  • 关键词:等离子体流动控制 ; 组合激励 ; 串列叶栅 ; 流动分离 ; 数值模拟 ; 总压损失系数
  • 英文关键词:plasma flow control;;combined excitation;;tandem cascade;;flow separation;;numerical simulation;;coefficient of total pressure loss
  • 中文刊名:HKFJ
  • 英文刊名:Aeroengine
  • 机构:浙江省兰溪市第一中学;空军工程大学等离子动力学重点实验室;空军工程大学航空工程学院;
  • 出版日期:2019-02-15
  • 出版单位:航空发动机
  • 年:2019
  • 期:v.45;No.195
  • 语种:中文;
  • 页:HKFJ201901005
  • 页数:6
  • CN:01
  • ISSN:21-1359/V
  • 分类号:26-31
摘要
为了探究不同等离子体激励布局对串列叶栅角区流动分离抑制的效果,采用数值仿真方法,在流动分离前施加激励,对不同布局激励前后流场的流场结构和总压损失沿流向分布进行对比,分析了等离子体激励布局对串列叶栅角区流动分离的影响,以及激励对串列叶栅气流掺混的影响。结果表明:在来流马赫数为0.5、攻角为4°时,ACU2布局激励对流动分离有较好的抑制作用,总压损失系数减小10.74%;ACU2-ACU5组合激励对抑制后排叶片的角区分离有较好效果,总压损失系数降低25.09%。
        The effect of different plasma excitation layouts on the suppression of flow separation in the tandem cascade angular region was investigated by numerical simulation method. The excitation was brought to bear before flow separation. The structure of flow field and the distribution of total pressure loss along the direction of flow before and after different excitation layouts were compared. The effect of plasma excitation on flow separation in the tandem cascade angle region and the effect of excitation on tandem cascade flow mixing were analyzed. The results show that when the inlet Mach number is 0.5 and the attack angle is 4°,the ACU2 layout excitation has a better effect on the flow separation,and the total pressure loss coefficient is reduced by 10.74%. The combined excitation of ACU2-ACU5 has a better effect on restraining the angle region separation of the rear row blade,and the coefficient of total pressure loss is reduced by 25.09%.
引文
[1]刘志刚,梁俊,凌代军,等.串列叶栅流场特性的试验与数值模拟[J].热能动力工程,2013,28(5):449-454.LIU Zhigang,LIANG Jun,LING Daijun,et al.Experimental and numerical simulation of flow field characteristics of tandem cascade[J].Journal of Engineering for Thermal Energy and Power,2013,28(5):449-454.(in Chinese)
    [2]赵斌,刘宝杰.前、后排叶片相对位置对串列转子性能的影响[J].推进技术,2012,33(1):26-36.ZHAO Bin,LIU Baojie.Effects of relative geometry position of forward and aft blades on performance of tandem rotor[J].Journal of Propulsion Technology.2012,33(1):26-36.(in Chinese)
    [3]Benard N,Sujar G P,Bayoda K D,et al.Pulsed dielectric barrier discharge for manipulation of turbulent flow downstream a backward-facing-step[R].AIAA 2014-1127.
    [4]Patel M P,Ng T T,Vasudevan S,et al.Numerical design and analysis of a multi-DBD actuator configuration for the experimental testing of Acheon nozzle model[J].Aerospace Science and Technology,2015,41(3):259-273.
    [5]王学德,赵小虎,王路成.高负荷压气机叶栅等离子体流动控制数值仿真与拓扑分析[J].推进技术,2013,34(10):1321-1329.WANG Xuede,ZHAO Xiaohu,WANG Lucheng.Numerical investigation and topological analysis of plasma flow control on a highly loaded compressor cascade[J].Journal of Propulsion Technology,2013,34(10):1321-1329(in Chinese)
    [6]陈浮,刘华坪,陈焕龙,等.等离子体对大折转角扩压叶栅性能影响的机理[J].推进技术,2010,31(6):681-688.CHEN Fu,LIU Huaping,CHEN Huanlong,et al.Mechanism of plasma effect on the performance of highly-turning compressor cascade[J].Journal of Propulsion Technology.2010,31(6)681-688.(in Chinese)
    [7]Arvind S,Jamey D J,Yildirim B S.Flow control using plasma actuators and linear annular plasma synthetic jet actuators[R].AIAA-2006-3033.
    [8]Saddoughi S,Bennett G,Boespflug M,et al.Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators[R].ASME 2014-GT-25294.
    [9]吴云,李应红,朱俊强,等.等离子体气动激励扩大低速轴流式压气机稳定性的实验[J].航空动力学报,2007,22(12):2025-2030.WU Yun,LI Yinghong,ZHU Jungqiang,et al.Experimental investigation of using plasma aerodynamic actuation to extend low-speed axial compressor's stability[J].Journal of Aerospace Power,2007,22(12):2025-2030.(in Chinese)
    [10]李钢,聂超群,朱俊强,等.介质阻挡放电等离子体对压气机叶栅性能影响的实验[J].航空动力学报,2008,23(3):522-526.LI Gang,NIE Chaoqun,ZHU Junqiang,et al.Experimental investigation of the effect of dielectric barrier dischange plasma on performance of compressor cascade[J].Journal of Aerospace Power,2008,23(3):522-526.(in Chinese)
    [11]李应红,吴云,宋慧敏,等.等离子体流动控制的研究进展与机理探讨[C]//中国航空学会第六届动力年会论文集.南京:中国航空学会动力专业分会,2006:790-799.LI Yinghong,WU Yun,SONG Huimin,et al.Progress and mechanism analysis for plasma flow control[C]//Power Branch of CSAA.Proceedings of 6th Annual Power Meeting.Nanjing:Power Branch of CSAA,2006:790-799.(in Chinese)
    [12]梁华,李应红,程邦勤,等.等离子体气动激励抑制翼型失速分离的仿真研究[J.航空动力学报,2008,23(5):777-783.LIANG Hua,LI Yinghong,CHENG Bangqin,et al.Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation[J].Journal of Aerospace Power,2008,23(5):777-783.(in Chinese)
    [13]李应红,吴云,张朴,等.等离子体激励抑制翼型失速分离的实验研究[J].空气动力学学报,2008,26(3):372-377.LI Yinghong,WU Yun,ZHANG Pu,et al.Experimental investigation on airfoil stall separation suppression by plasma actuation[J].Acta Aerodynamica Sinica,2008,26(3):372-377.(in Chinese)
    [14]赵小虎,吴云,李应红,等.高负荷压气机叶栅分离结构及其等离子体流动控制[J].航空学报,2012,33(2):208-219.ZHAO Xiaohu,WU Yun,LI Yinghong,et al.Separation structure and plasma flow control on highly loaded compressor cascade[J].Acta Aeronautica et Astronautica Sinica,2012,33(2):208-219.(in Chinese)
    [15]李应红,吴云,张海灯,等.等离子体激励式压气机[J].推进技术,2017,38(10):2164-2171.LI Yinghong,WU Yun,ZHANG Haideng,et al.Plasma actuated compressor[J].Journal of Propulsion Technology,2017,38(10):2164-2171.(in Chinese)
    [16]Shyy W,Jayaraman B,Andersson A.Modeling of glow discharge induced fluid dynamics[J].Journal of Applied Physics,2002,92(11):6434-6443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700